Articles | Volume 11, issue 23
https://doi.org/10.5194/acp-11-12253-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-11-12253-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters
L. A. Lee
Institute for Climate and Atmospheric Science, University of Leeds, UK
K. S. Carslaw
Institute for Climate and Atmospheric Science, University of Leeds, UK
K. J. Pringle
Institute for Climate and Atmospheric Science, University of Leeds, UK
G. W. Mann
Institute for Climate and Atmospheric Science, University of Leeds, UK
D. V. Spracklen
Institute for Climate and Atmospheric Science, University of Leeds, UK
Viewed
Total article views: 6,001 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 19 Jul 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,553 | 2,306 | 142 | 6,001 | 153 | 112 |
- HTML: 3,553
- PDF: 2,306
- XML: 142
- Total: 6,001
- BibTeX: 153
- EndNote: 112
Total article views: 5,350 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 08 Dec 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,273 | 1,954 | 123 | 5,350 | 142 | 110 |
- HTML: 3,273
- PDF: 1,954
- XML: 123
- Total: 5,350
- BibTeX: 142
- EndNote: 110
Total article views: 651 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 19 Jul 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
280 | 352 | 19 | 651 | 11 | 2 |
- HTML: 280
- PDF: 352
- XML: 19
- Total: 651
- BibTeX: 11
- EndNote: 2
Cited
105 citations as recorded by crossref.
- A machine-learning-based global sea-surface iodide distribution T. Sherwen et al. 10.5194/essd-11-1239-2019
- Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition N. Bellouin et al. 10.5194/essd-12-1649-2020
- Mesh-Clustered Gaussian Process Emulator for Partial Differential Equation Boundary Value Problems C. Sung et al. 10.1080/00401706.2024.2320211
- The magnitude and sources of uncertainty in global aerosol K. Carslaw et al. 10.1039/c3fd00043e
- Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades L. Regayre et al. 10.1002/2014GL062029
- Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model K. Aleksankina et al. 10.5194/acp-19-2881-2019
- Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a global climate model R. Morales Betancourt & A. Nenes 10.5194/acp-14-4809-2014
- The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei L. Lee et al. 10.5194/acp-13-8879-2013
- New Global Sensitivity Measure Based on Fuzzy Distance C. Chen et al. 10.1061/(ASCE)EM.1943-7889.0001336
- Uncertainty analysis of a model of wind-blown volcanic plumes M. Woodhouse et al. 10.1007/s00445-015-0959-2
- Processes controlling the vertical aerosol distribution in marine stratocumulus regions – a sensitivity study using the climate model NorESM1-M L. Frey et al. 10.5194/acp-21-577-2021
- Development of a Regional Chemical Transport Model with Size-Resolved Aerosol Microphysics and Its Application on Aerosol Number Concentration Simulation over China X. Chen et al. 10.2151/sola.2014-017
- Comparative Assessment of Climate Engineering Scenarios in the Presence of Parametric Uncertainty G. Tran et al. 10.1029/2019MS001787
- Uncertainty quantification based cloud parameterization sensitivity analysis in the NCAR community atmosphere model R. Pathak et al. 10.1038/s41598-020-74441-x
- Bayesian probabilistic representation of complex systems: With application to wave load modeling S. Glavind et al. 10.1111/mice.12763
- Finding plausible and diverse variants of a climate model. Part 1: establishing the relationship between errors at weather and climate time scales D. Sexton et al. 10.1007/s00382-019-04625-3
- Sensitivity and Uncertainty Analysis of Two Human Atrial Cardiac Cell Models Using Gaussian Process Emulators S. Coveney & R. Clayton 10.3389/fphys.2020.00364
- Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator D. Watson-Parris et al. 10.5194/gmd-14-7659-2021
- Identifying and removing structural biases in climate models with history matching D. Williamson et al. 10.1007/s00382-014-2378-z
- Model emulation to understand the joint effects of ice-nucleating particles and secondary ice production on deep convective anvil cirrus R. Hawker et al. 10.5194/acp-21-17315-2021
- Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia S. Vander Hoorn et al. 10.3390/atmos13122009
- On the relationship between aerosol model uncertainty and radiative forcing uncertainty L. Lee et al. 10.1073/pnas.1507050113
- Parallel partial Gaussian process emulation for computer models with massive output M. Gu & J. Berger 10.1214/16-AOAS934
- Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation L. Conibear et al. 10.1029/2021GH000570
- Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model N. Bellouin et al. 10.5194/acp-13-3027-2013
- Global sensitivity analysis of the Indian monsoon during the Pleistocene P. Araya-Melo et al. 10.5194/cp-11-45-2015
- An application of the Kriging method in global sensitivity analysis with parameter uncertainty P. Wang et al. 10.1016/j.apm.2013.01.019
- An emulator approach to stratocumulus susceptibility F. Glassmeier et al. 10.5194/acp-19-10191-2019
- Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model L. Revell et al. 10.5194/acp-18-16155-2018
- Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology A. Karmalkar et al. 10.1007/s00382-019-04617-3
- Global air quality and climate A. Fiore et al. 10.1039/c2cs35095e
- Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters N. Harvey et al. 10.5194/nhess-18-41-2018
- Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture J. Park & S. van den Heever 10.5194/acp-22-10527-2022
- On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model J. Bao et al. 10.3390/w7126662
- Machine learning for weather and climate are worlds apart D. Watson-Parris 10.1098/rsta.2020.0098
- Bounding Global Aerosol Radiative Forcing of Climate Change N. Bellouin et al. 10.1029/2019RG000660
- A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections: part 1: selecting the parameter combinations D. Sexton et al. 10.1007/s00382-021-05709-9
- An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6 T. Eidhammer et al. 10.5194/gmd-17-7835-2024
- The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design C. Timmreck et al. 10.5194/gmd-11-2581-2018
- Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study K. Aleksankina et al. 10.5194/gmd-11-1653-2018
- Reviewing Climate Changes Modeling Methods V. Pepelyaev et al. 10.1007/s10559-023-00574-2
- Meta-modeling of a simulation chain for urban air quality J. Hammond et al. 10.1186/s40323-020-00173-2
- Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity C. Fletcher et al. 10.5194/acp-18-17529-2018
- Mitigation of PM<sub>2.5</sub> and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period Y. Chen et al. 10.5194/acp-20-499-2020
- Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions M. Gunarathna et al. 10.3390/agronomy9050242
- Atmospheric-methane source and sink sensitivity analysis using Gaussian process emulation A. Stell et al. 10.5194/acp-21-1717-2021
- A global model perturbed parameter ensemble study of secondary organic aerosol formation K. Sengupta et al. 10.5194/acp-21-2693-2021
- Complex model calibration through emulation, a worked example for a stochastic epidemic model M. Dunne et al. 10.1016/j.epidem.2022.100574
- Uncertainty Quantification and Bayesian Inference of Cloud Parameterization in the NCAR Single Column Community Atmosphere Model (SCAM6) R. Pathak et al. 10.3389/fclim.2021.670740
- Uncertainty Analysis in Multi‐Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems V. Srikrishnan et al. 10.1029/2021EF002644
- Mapping the drivers of uncertainty in atmospheric selenium deposition with global sensitivity analysis A. Feinberg et al. 10.5194/acp-20-1363-2020
- Exploratory ensemble designs for environmental models using k‐extended Latin Hypercubes D. Williamson 10.1002/env.2335
- Multiobjective constraints for climate model parameter choices: PragmaticPareto fronts in CESM1 B. Langenbrunner & J. Neelin 10.1002/2017MS000942
- Uncertainties in anthropogenic aerosol concentrations and direct radiative forcing induced by emission inventories in eastern China W. Chang et al. 10.1016/j.atmosres.2015.06.021
- A novel approach for determining source–receptor relationships in model simulations: a case study of black carbon transport in northern hemisphere winter P. Ma et al. 10.1088/1748-9326/8/2/024042
- Assessing the potential for simplification in global climate model cloud microphysics U. Proske et al. 10.5194/acp-22-4737-2022
- Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models M. Fischer et al. 10.5194/wcd-5-511-2024
- Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach N. Bounceur et al. 10.5194/esd-6-205-2015
- Toward Efficient Calibration of Higher‐Resolution Earth System Models C. Fletcher et al. 10.1029/2021MS002836
- Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations B. Sič et al. 10.5194/gmd-8-381-2015
- Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing J. Johnson et al. 10.5194/acp-20-9491-2020
- Emulation of a process-based estuarine hydrodynamic model L. Chen et al. 10.1080/02626667.2018.1447112
- The Climatic Importance of Uncertainties in Regional Aerosol–Cloud Radiative Forcings over Recent Decades L. Regayre et al. 10.1175/JCLI-D-15-0127.1
- An overview of methods to evaluate uncertainty of deterministic models in decision support L. Uusitalo et al. 10.1016/j.envsoft.2014.09.017
- Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth B. Sič et al. 10.5194/amt-9-5535-2016
- Online coupled regional meteorology chemistry models in Europe: current status and prospects A. Baklanov et al. 10.5194/acp-14-317-2014
- Boundary layer nucleation as a source of new CCN in savannah environment L. Laakso et al. 10.5194/acp-13-1957-2013
- Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia Y. Kang et al. 10.1016/j.isprsjprs.2021.11.016
- Emulation and Sobol' sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident S. Girard et al. 10.1002/2015JD023993
- Addressing Complexity in Global Aerosol Climate Model Cloud Microphysics U. Proske et al. 10.1029/2022MS003571
- The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization K. Sakamoto et al. 10.5194/acp-16-7709-2016
- Uncertainties in the simulated intercontinental transport of air pollutants in the springtime from emission and meteorological inputs Q. Ye et al. 10.1016/j.atmosenv.2022.119431
- Temporally resolved sectoral and regional contributions to air pollution in Beijing: informing short-term emission controls T. Ansari et al. 10.5194/acp-21-4471-2021
- Demystifying the complex nature of stratocumulus clouds with machine learning R. Sansom 10.1002/wea.4001
- Evaluating uncertainty in convective cloud microphysics using statistical emulation J. Johnson et al. 10.1002/2014MS000383
- The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS L. Kong et al. 10.1016/j.envpol.2016.05.085
- Unknown Eruption Source Parameters Cause Large Uncertainty in Historical Volcanic Radiative Forcing Reconstructions L. Marshall et al. 10.1029/2020JD033578
- Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection 10.2903/j.efsa.2016.4578
- Analysis of present day and future OH and methane lifetime in the ACCMIP simulations A. Voulgarakis et al. 10.5194/acp-13-2563-2013
- Aerosols in the Pre-industrial Atmosphere K. Carslaw et al. 10.1007/s40641-017-0061-2
- Meta-modeling of ADMS-Urban by dimension reduction and emulation V. Mallet et al. 10.1016/j.atmosenv.2018.04.009
- Exploring How Eruption Source Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation L. Marshall et al. 10.1029/2018JD028675
- Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment A. Igel et al. 10.1002/2017JD027339
- Environmental Controls on Tropical Sea Breeze Convection and Resulting Aerosol Redistribution J. Park et al. 10.1029/2019JD031699
- Using Emulators to Understand the Sensitivity of Deep Convective Clouds and Hail to Environmental Conditions C. Wellmann et al. 10.1029/2018MS001465
- Emulator-based global sensitivity analysis for flow-like landslide run-out models H. Zhao et al. 10.1007/s10346-021-01690-w
- Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity G. Mann et al. 10.5194/acp-14-4679-2014
- A Functional Analysis of Pedotransfer Functions Developed for Sri Lankan soils: Applicability for Process-Based Crop Models M. Gunarathna et al. 10.3390/agronomy10020285
- Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator E. Reyes-Villegas et al. 10.5194/acp-23-5763-2023
- Overview of integrated models for bioprocess engineering A. Velayudhan 10.1016/j.coche.2014.09.007
- Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters V. Karydis et al. 10.5194/acp-12-9041-2012
- What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II Z. Kipling et al. 10.5194/acp-16-2221-2016
- Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and Their Radiative Forcing M. Yoshioka et al. 10.1029/2019MS001628
- Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity O. Wild et al. 10.5194/acp-20-4047-2020
- Mapping the uncertainty in global CCN using emulation L. Lee et al. 10.5194/acp-12-9739-2012
- Atmospheric inversion of SO<sub>2</sub> and primary aerosol emissions for the year 2010 N. Huneeus et al. 10.5194/acp-13-6555-2013
- Emulating dynamic non-linear simulators using Gaussian processes H. Mohammadi et al. 10.1016/j.csda.2019.05.006
- Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China L. Conibear et al. 10.1029/2021GH000391
- Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model J. Wang et al. 10.5194/gmd-12-4261-2019
- The importance of comprehensive parameter sampling and multiple observations for robust constraint of aerosol radiative forcing J. Johnson et al. 10.5194/acp-18-13031-2018
- Application of Multivariate Sensitivity Analysis Techniques to AGCM-Simulated Tropical Cyclones F. He et al. 10.1175/MWR-D-17-0265.1
- Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF L. Regayre et al. 10.5194/acp-18-9975-2018
- Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint R. Moore et al. 10.5194/acp-13-4235-2013
- Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail C. Wellmann et al. 10.5194/acp-20-2201-2020
- Primary versus secondary contributions to particle number concentrations in the European boundary layer C. Reddington et al. 10.5194/acp-11-12007-2011
104 citations as recorded by crossref.
- A machine-learning-based global sea-surface iodide distribution T. Sherwen et al. 10.5194/essd-11-1239-2019
- Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition N. Bellouin et al. 10.5194/essd-12-1649-2020
- Mesh-Clustered Gaussian Process Emulator for Partial Differential Equation Boundary Value Problems C. Sung et al. 10.1080/00401706.2024.2320211
- The magnitude and sources of uncertainty in global aerosol K. Carslaw et al. 10.1039/c3fd00043e
- Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades L. Regayre et al. 10.1002/2014GL062029
- Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model K. Aleksankina et al. 10.5194/acp-19-2881-2019
- Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a global climate model R. Morales Betancourt & A. Nenes 10.5194/acp-14-4809-2014
- The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei L. Lee et al. 10.5194/acp-13-8879-2013
- New Global Sensitivity Measure Based on Fuzzy Distance C. Chen et al. 10.1061/(ASCE)EM.1943-7889.0001336
- Uncertainty analysis of a model of wind-blown volcanic plumes M. Woodhouse et al. 10.1007/s00445-015-0959-2
- Processes controlling the vertical aerosol distribution in marine stratocumulus regions – a sensitivity study using the climate model NorESM1-M L. Frey et al. 10.5194/acp-21-577-2021
- Development of a Regional Chemical Transport Model with Size-Resolved Aerosol Microphysics and Its Application on Aerosol Number Concentration Simulation over China X. Chen et al. 10.2151/sola.2014-017
- Comparative Assessment of Climate Engineering Scenarios in the Presence of Parametric Uncertainty G. Tran et al. 10.1029/2019MS001787
- Uncertainty quantification based cloud parameterization sensitivity analysis in the NCAR community atmosphere model R. Pathak et al. 10.1038/s41598-020-74441-x
- Bayesian probabilistic representation of complex systems: With application to wave load modeling S. Glavind et al. 10.1111/mice.12763
- Finding plausible and diverse variants of a climate model. Part 1: establishing the relationship between errors at weather and climate time scales D. Sexton et al. 10.1007/s00382-019-04625-3
- Sensitivity and Uncertainty Analysis of Two Human Atrial Cardiac Cell Models Using Gaussian Process Emulators S. Coveney & R. Clayton 10.3389/fphys.2020.00364
- Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator D. Watson-Parris et al. 10.5194/gmd-14-7659-2021
- Identifying and removing structural biases in climate models with history matching D. Williamson et al. 10.1007/s00382-014-2378-z
- Model emulation to understand the joint effects of ice-nucleating particles and secondary ice production on deep convective anvil cirrus R. Hawker et al. 10.5194/acp-21-17315-2021
- Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia S. Vander Hoorn et al. 10.3390/atmos13122009
- On the relationship between aerosol model uncertainty and radiative forcing uncertainty L. Lee et al. 10.1073/pnas.1507050113
- Parallel partial Gaussian process emulation for computer models with massive output M. Gu & J. Berger 10.1214/16-AOAS934
- Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation L. Conibear et al. 10.1029/2021GH000570
- Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model N. Bellouin et al. 10.5194/acp-13-3027-2013
- Global sensitivity analysis of the Indian monsoon during the Pleistocene P. Araya-Melo et al. 10.5194/cp-11-45-2015
- An application of the Kriging method in global sensitivity analysis with parameter uncertainty P. Wang et al. 10.1016/j.apm.2013.01.019
- An emulator approach to stratocumulus susceptibility F. Glassmeier et al. 10.5194/acp-19-10191-2019
- Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model L. Revell et al. 10.5194/acp-18-16155-2018
- Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology A. Karmalkar et al. 10.1007/s00382-019-04617-3
- Global air quality and climate A. Fiore et al. 10.1039/c2cs35095e
- Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters N. Harvey et al. 10.5194/nhess-18-41-2018
- Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture J. Park & S. van den Heever 10.5194/acp-22-10527-2022
- On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model J. Bao et al. 10.3390/w7126662
- Machine learning for weather and climate are worlds apart D. Watson-Parris 10.1098/rsta.2020.0098
- Bounding Global Aerosol Radiative Forcing of Climate Change N. Bellouin et al. 10.1029/2019RG000660
- A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections: part 1: selecting the parameter combinations D. Sexton et al. 10.1007/s00382-021-05709-9
- An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6 T. Eidhammer et al. 10.5194/gmd-17-7835-2024
- The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design C. Timmreck et al. 10.5194/gmd-11-2581-2018
- Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study K. Aleksankina et al. 10.5194/gmd-11-1653-2018
- Reviewing Climate Changes Modeling Methods V. Pepelyaev et al. 10.1007/s10559-023-00574-2
- Meta-modeling of a simulation chain for urban air quality J. Hammond et al. 10.1186/s40323-020-00173-2
- Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity C. Fletcher et al. 10.5194/acp-18-17529-2018
- Mitigation of PM<sub>2.5</sub> and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period Y. Chen et al. 10.5194/acp-20-499-2020
- Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions M. Gunarathna et al. 10.3390/agronomy9050242
- Atmospheric-methane source and sink sensitivity analysis using Gaussian process emulation A. Stell et al. 10.5194/acp-21-1717-2021
- A global model perturbed parameter ensemble study of secondary organic aerosol formation K. Sengupta et al. 10.5194/acp-21-2693-2021
- Complex model calibration through emulation, a worked example for a stochastic epidemic model M. Dunne et al. 10.1016/j.epidem.2022.100574
- Uncertainty Quantification and Bayesian Inference of Cloud Parameterization in the NCAR Single Column Community Atmosphere Model (SCAM6) R. Pathak et al. 10.3389/fclim.2021.670740
- Uncertainty Analysis in Multi‐Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems V. Srikrishnan et al. 10.1029/2021EF002644
- Mapping the drivers of uncertainty in atmospheric selenium deposition with global sensitivity analysis A. Feinberg et al. 10.5194/acp-20-1363-2020
- Exploratory ensemble designs for environmental models using k‐extended Latin Hypercubes D. Williamson 10.1002/env.2335
- Multiobjective constraints for climate model parameter choices: PragmaticPareto fronts in CESM1 B. Langenbrunner & J. Neelin 10.1002/2017MS000942
- Uncertainties in anthropogenic aerosol concentrations and direct radiative forcing induced by emission inventories in eastern China W. Chang et al. 10.1016/j.atmosres.2015.06.021
- A novel approach for determining source–receptor relationships in model simulations: a case study of black carbon transport in northern hemisphere winter P. Ma et al. 10.1088/1748-9326/8/2/024042
- Assessing the potential for simplification in global climate model cloud microphysics U. Proske et al. 10.5194/acp-22-4737-2022
- Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models M. Fischer et al. 10.5194/wcd-5-511-2024
- Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach N. Bounceur et al. 10.5194/esd-6-205-2015
- Toward Efficient Calibration of Higher‐Resolution Earth System Models C. Fletcher et al. 10.1029/2021MS002836
- Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations B. Sič et al. 10.5194/gmd-8-381-2015
- Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing J. Johnson et al. 10.5194/acp-20-9491-2020
- Emulation of a process-based estuarine hydrodynamic model L. Chen et al. 10.1080/02626667.2018.1447112
- The Climatic Importance of Uncertainties in Regional Aerosol–Cloud Radiative Forcings over Recent Decades L. Regayre et al. 10.1175/JCLI-D-15-0127.1
- An overview of methods to evaluate uncertainty of deterministic models in decision support L. Uusitalo et al. 10.1016/j.envsoft.2014.09.017
- Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth B. Sič et al. 10.5194/amt-9-5535-2016
- Online coupled regional meteorology chemistry models in Europe: current status and prospects A. Baklanov et al. 10.5194/acp-14-317-2014
- Boundary layer nucleation as a source of new CCN in savannah environment L. Laakso et al. 10.5194/acp-13-1957-2013
- Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia Y. Kang et al. 10.1016/j.isprsjprs.2021.11.016
- Emulation and Sobol' sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident S. Girard et al. 10.1002/2015JD023993
- Addressing Complexity in Global Aerosol Climate Model Cloud Microphysics U. Proske et al. 10.1029/2022MS003571
- The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization K. Sakamoto et al. 10.5194/acp-16-7709-2016
- Uncertainties in the simulated intercontinental transport of air pollutants in the springtime from emission and meteorological inputs Q. Ye et al. 10.1016/j.atmosenv.2022.119431
- Temporally resolved sectoral and regional contributions to air pollution in Beijing: informing short-term emission controls T. Ansari et al. 10.5194/acp-21-4471-2021
- Demystifying the complex nature of stratocumulus clouds with machine learning R. Sansom 10.1002/wea.4001
- Evaluating uncertainty in convective cloud microphysics using statistical emulation J. Johnson et al. 10.1002/2014MS000383
- The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS L. Kong et al. 10.1016/j.envpol.2016.05.085
- Unknown Eruption Source Parameters Cause Large Uncertainty in Historical Volcanic Radiative Forcing Reconstructions L. Marshall et al. 10.1029/2020JD033578
- Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection 10.2903/j.efsa.2016.4578
- Analysis of present day and future OH and methane lifetime in the ACCMIP simulations A. Voulgarakis et al. 10.5194/acp-13-2563-2013
- Aerosols in the Pre-industrial Atmosphere K. Carslaw et al. 10.1007/s40641-017-0061-2
- Meta-modeling of ADMS-Urban by dimension reduction and emulation V. Mallet et al. 10.1016/j.atmosenv.2018.04.009
- Exploring How Eruption Source Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation L. Marshall et al. 10.1029/2018JD028675
- Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment A. Igel et al. 10.1002/2017JD027339
- Environmental Controls on Tropical Sea Breeze Convection and Resulting Aerosol Redistribution J. Park et al. 10.1029/2019JD031699
- Using Emulators to Understand the Sensitivity of Deep Convective Clouds and Hail to Environmental Conditions C. Wellmann et al. 10.1029/2018MS001465
- Emulator-based global sensitivity analysis for flow-like landslide run-out models H. Zhao et al. 10.1007/s10346-021-01690-w
- Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity G. Mann et al. 10.5194/acp-14-4679-2014
- A Functional Analysis of Pedotransfer Functions Developed for Sri Lankan soils: Applicability for Process-Based Crop Models M. Gunarathna et al. 10.3390/agronomy10020285
- Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator E. Reyes-Villegas et al. 10.5194/acp-23-5763-2023
- Overview of integrated models for bioprocess engineering A. Velayudhan 10.1016/j.coche.2014.09.007
- Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters V. Karydis et al. 10.5194/acp-12-9041-2012
- What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II Z. Kipling et al. 10.5194/acp-16-2221-2016
- Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and Their Radiative Forcing M. Yoshioka et al. 10.1029/2019MS001628
- Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity O. Wild et al. 10.5194/acp-20-4047-2020
- Mapping the uncertainty in global CCN using emulation L. Lee et al. 10.5194/acp-12-9739-2012
- Atmospheric inversion of SO<sub>2</sub> and primary aerosol emissions for the year 2010 N. Huneeus et al. 10.5194/acp-13-6555-2013
- Emulating dynamic non-linear simulators using Gaussian processes H. Mohammadi et al. 10.1016/j.csda.2019.05.006
- Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China L. Conibear et al. 10.1029/2021GH000391
- Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model J. Wang et al. 10.5194/gmd-12-4261-2019
- The importance of comprehensive parameter sampling and multiple observations for robust constraint of aerosol radiative forcing J. Johnson et al. 10.5194/acp-18-13031-2018
- Application of Multivariate Sensitivity Analysis Techniques to AGCM-Simulated Tropical Cyclones F. He et al. 10.1175/MWR-D-17-0265.1
- Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF L. Regayre et al. 10.5194/acp-18-9975-2018
- Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint R. Moore et al. 10.5194/acp-13-4235-2013
- Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail C. Wellmann et al. 10.5194/acp-20-2201-2020
Saved (final revised paper)
Saved (final revised paper)
Latest update: 23 Nov 2024
Altmetrics
Final-revised paper
Preprint