Blake, N. J., Campbell, E., Vay, S. A., Fuelberg, H. E., Huey, L. G., Sachse, G., Meinardi, S., Beyersdorf, A., Baker, A., Barletta, B., Midyett, J., Doezema, L., Kamboures, M., McAdams, J., Novak, B., Rowland, F. S., and Blake, D. R.: Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO
2, J. Geophys. Res., 113, D09S90, https://doi.org/10.1029/2007JD009163, 2008.
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner, R. A.: The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales, Chem. Geol., 54, 149–155, 1986.
Chin, M. and Davis, D. D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 100, 8993–9005, 1995.
Crutzen, P. J.: The possible importance of CSO for the sulfate aerosol layer of the Stratosphere, Geophys. Res. Lett., 3, 73–76, 1976.
Danielache, S. O., Johnson, M. S., Nanbu, S., Grage, M. M.-L., McLinden, C., and Yoshida, N.: Ab initio study of sulfur isotope fractionation in the reaction of OCS with OH, Chem. Phys. Lett., 450, 214–220, 2008.
Danielache, S. O., Nanbu, S., Eskebjerg, C., Johnson, M. S., and Yoshida, N.: Carbonyl sulfide isotopologues: ultraviolet absorption cross sections and stratospheric photolysis, J. Chem. Phys., 131, 024307, https://doi.org/10.1063/1.3156314, 2009.
DeMore, W. B., Sanders, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL, evaluation no. 12, California Institute of Technology, Pasadena, California, 1997.
Du, S., Francisco, J. S., Shepler, B. C., and Peterson, K. A.: Determination of the rate constant for sulfur recombination by quasiclassical trajectory calculations, J. Chem. Phys., 128, 204306, https://doi.org/10.1063/1.2919569, 2008.
Farquhar, J., Savarino, J., Airieau, S., and Thiemens, M. H.: Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO
2 photolysis: Applications to the early atmosphere, J. Geophys. Res., 12, 32829–32839, 2001.
Farwell, S. O., MacTaggart, D. L., Chathan, W., Everson, D. O., Samaranayake, K., and Lim, Y. T.: Airborne measurements of total sulfur gases during NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3, J. Geophys. Res., 100, 7223–7234, 1995.
Francisco, J. S., Lyons, J. R., Williams, I. H.: High-level
ab initio studies of the structure, vibrational spectra, and energetics of S
3, J. Chem. Phys., 123, 054302, https://doi.org/10.1063/1.1979474, 2005.
Hattori, S., Danielache, S. O., Johnson, M. S., Schmidt, J. A., Kjaergaard, H. G., Toyoda, S., Ueno, Y., and Yoshida, N.: Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC
32S, OC
33S, OC
34S and O
13CS: isotopic fractionation in photolysis and atmospheric implications, Atmos. Chem. Phys. Discuss., 11, 20487–20520, https://doi.org/10.5194/acpd-11-20487-2011, 2011.\blackbox\bf will be updated by production office.
Hulston, J. R. and Thode, H. G.: Variations in the S
33, S
34, and S
36 contents of meteorites and their relation to chemical and nuclear effects, J. Geophys. Res., 70, 3475–3484, 1965.
Kaiser, J. and Röckmann, T.: Correction of mass-spectrometric isotope ratio measurements for isobaric isotopologues of O
2, CO, CO
2, N
2O and SO
2, Rapid Commun. Mass Spectrom., 22, 3997–4008, 2008.
Kaiser, J., Röckmann, T., Brenninkmeijer, C. A. M., and Crutzen, P. J.: Wavelength dependence of isotope fractionation in N
2O photolysis, Atmos. Chem. Phys., 3, 303–313, https://doi.org/10.5194/acp-3-303-2003, 2003.
Kaiser, J., Röckmann, T., and Brenninkmeijer, C. A. M.: Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide, J. Geophys. Res., 109, D03305, https://doi.org/10.1029/2003JD004088, 2004.
Khalil, M. A. K. and Rasmussen, R. A.: Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS
2) in the Earth's atmosphere, Atmos. Environ., 18, 1805–1813, 1984.
Leung, F.-Y. T., Colussi, A. J., Hoffmann, M. R., and Toon, G. C.: Isotopic Fractionation of carbonyl sulfide in the atmosphere: implications for the source of background stratospheric sulfate aerosol, Geophys. Res. Lett., 29, 1474, https://doi.org/10.1029/2001GL013955, 2002.
Lu, C.-W., Wu, Y.-J., Lee, Y.-P., Zhu, R. S., and Lin, M. C.: Experimental and theoretical investigation of rate coefficients of the reaction S(
3P) + OCS in the temperature range of 298-985 K, J. Chem. Phys., 125, 164329, https://doi.org/10.1063/1.2357739, 2006.
Luz, B. and Barkan, E.: The isotope ratios
17O/
16O and
18O/
16O in molecular oxygen and their significance in biogeochemistry, Geochim. Cosmochim. Acta, 69, 1099–1110, 2005.
Lyons, J. R.: Atmospherically-derived mass-independent sulfur isotope signatures, and incorporation into sediments, Chem. Geol., 267, Sp. Iss. SI, 164–174, 2009.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes, Pl. Soil, 62, 413–430, 1981.
Miller, C. E., Onorato, R. M., Liang, M.-C., and Yung, Y. L.: Extraordinary isotopic fractionation in ozone photolysis, Geophys. Res. Lett., 32, L14814, https://doi.org/10.1029/2005GL023160, 2005.
Minschwaner, K., Salawitch, R. J., and McElroy, M. B.: Absorption of solar radiation by O
2: implications for O
3 and lifetimes of N
2O, CFCl
3, and CF
2Cl
2, J. Geophys. Res., 98, 10543–10561, 1993.
Newman, L., Krouse, H. R., and Grinenko, V. A.: Sulphur isotope variations in the atmosphere, in Stable Isotopes: Natural and Anthropogenic sulphur in the Environment, edited by H. R. Krouse and V. A. Grinenko, 133–176, Scientific Committee On Problems of Environment (SCOPE), available at: http://www.icsu-scope.org/downloadpubs/scope43/index.html, 1991.
Ohmoto, H. and Lasaga, A. C.: Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems, Geochim. Cosmochim. Acta, 46, 1727–1745, 1982.
Okabe, H.: Photochemistry of small molecules, John Wiley, New York, 215–217, 1978.
Ono, S., Eigenbrode, J. L., Pavlov, A. A., Kharecha, P., Rumble, D., Kasting, J. F., and Freeman, K. H.: New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia, Earth Planet. Sci. Lett., 213, 15–30, 2003.
Ono, S., Wing, B., Johnston, D., Rumble, D., and Farquhar, J.: Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles, Geochim. Cosmochim. Acta, 70, 2238–2252, 2006.
Pitari, G., Mancini, E., Rizi, V., and Shindell, D. T.: Impact of future climate and emission changes on stratospheric aerosols and ozone, J. Atmos. Sci., 59, 414–440, 2002.
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to geoengineering with tropical and Arctic SO
2 injections, J. Geophys. Res., 113, D16101, https://doi.org/10.1029/2008JD010050, 2008.
Rudolph, R. N. and Inn, E. C. Y.: OCS photolysis and absorption in the 200- to 300- nm region, J. Geophys. Res., 86, 9891–9894, https://doi.org/10.1029/JC086iC10p09891, 1981.
Savarino, J., Romero, A., Cole-Dai, J., Bekki, S., and Thiemens, M. H.: UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate, Geophys. Res. Lett., 30, 2131, https://doi.org/10.1029/2003GL018134, 2003.
Sidhu, K. S., Csizmadia, I. G., Strausz, O. P., and Gunning, H. E.: The reactions of sulfur atoms. VII. The ultraviolet spectrum, the photolysis, and the mercury sensitization of carbonyl sulfide, J. Amer. Chem. Soc., 88, 2412–2417, 1966.
SPARC: SPARC Assessment of Stratospheric Aerosol Properties (ASAP), edited by: Thomason, L. and Peter, T., Tech. Rep. WMO-TD No. 1295, WCRP Series Report No. 124, SPARC Report No. 4, Berrieres le Buisson Cedex, 2006.
Suzuki, T., Katayanagi, H., Nanbu, S., and Aoyagi, M.: Nonadiabatic bending dissociation in 16 valence electron system OCS, J. Chem. Phys., 109, 5778–5794, 1998.
Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P.: OCS, stratospheric aerosols and climate, Nature, 283, 283–286, 1980.
Turco, R. P., Cicerone, R. J., Inn, E. C. Y., and Capone, L. A.: Long wavelength carbonyl sulfide photo-dissociation, J. Geophys. Res., 86, 5373–5377, 1981.
Ueno, Y., Johnson, M. S., Danielache, S. O., Eskebjerg, C., Pandey, A., and Yoshida, N.: Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox, P. Natl. Acad. Sci. USA, 106, 14784–14789, 2009.
Van Hook, W. A.: Kinetic isotope effect: Introduction and discussion of the theory, in C.J. Collins and N.S. Bowman (eds.) Isotope effect in chemical reactions, Van Nostrand Reinhold CO, New York, 1970.
von Hessberg, P., Kaiser, J., Enghoff, M. B., McLinden, C. A., Sorensen, S. L., Röckmann, T., and Johnson, M. S.: Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: $^{14}
N^{14}$NO, $^{15}
N^{14}$NO, $^{14}
N^{15}$NO and $^{15}
N^{15}$NO, Atmos. Chem. Phys., 4, 1237–1253, https://doi.org/10.5194/acp-4-1237-2004, 2004.
Wiebe, H. A., Knight, A. R., Strausz, O. P., and Gunning, H. E.: The reactions of sulfur atoms. V. Further studies on the reactions with olefins, J. Amer. Chem. Soc., 87, 1443–1449, 1964.
Zmolek, P., Xu, X. P., and Jackson, T.: Large mass independent sulfur isotope fractionations during the photopolymerization of (CS
2)-C-12 and (CS
2)-C-13, J. Phys. Chem. A, 103, 2477–2480, 1999.