Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 10, issue 2
Atmos. Chem. Phys., 10, 547–561, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 10, 547–561, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  21 Jan 2010

21 Jan 2010

Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2

M. L. White, Y. Zhou, R. S. Russo, H. Mao, R. Talbot, R. K. Varner, and B. C. Sive M. L. White et al.
  • Climate Change Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA

Abstract. Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (−11 to −21 pmol m−2s−1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (−10 to −30 pmol m−2s−1) in both CO2 regimes. In comparison, soil uptake (−0.8 to −1.7 pmol m−2 s−1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Final-revised paper