Preprints
https://doi.org/10.5194/acpd-7-6357-2007
https://doi.org/10.5194/acpd-7-6357-2007
11 May 2007
 | 11 May 2007
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Aerosol climatology: on the discrimination of aerosol types over four AERONET sites

D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath

Abstract. Aerosols have a significant regional and global effect on climate, which is about equal in magnitude but opposite in sign to that of greenhouse gases. Nevertheless, the aerosol climatic effect changes strongly with space and time because of the large variability of aerosol physical and optical properties, which is due to the variety of their sources, which are natural, and anthropogenic, and their dependence on the prevailing meteorological and atmospheric conditions. Characterization of aerosol properties is of major importance for the assessment of their role for climate. In the present study, 3-year AErosol RObotic NETwork (AERONET) data from ground-based sunphotometer measurements are used to establish climatologies of aerosol optical depth (AOD) and Ångström exponent α in several key locations of the world, characteristic of different atmospheric environments. Using daily mean values of AOD at 500 nm (AOD500) and Ångström exponent at the pair of wavelengths 440 and 870 nm (α 440–870), a discrimination of the different aerosol types occurring in each location is achieved. For this discrimination, appropriate thresholds for AOD500 and α 440–870 are applied. The discrimination of aerosol types in each location is made on an annual and seasonal basis. It is shown that a single aerosol type in a given location can exist only under specific conditions (e.g. intense forest fires or dust outbreaks), while the presence of well-mixed aerosols is the accustomed situation. Background clean aerosol conditions (AOD500<0.06) are mostly found over remote oceanic surfaces occurring on average in ~56.7% of total cases, while this situation is quite rare over land (occurrence of 3.8–13.7%). Our analysis indicates that these percentages change significantly from season to season. The spectral dependence of AOD exhibits large differences between the examined locations, while it exhibits a strong annual cycle.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath
D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath

Viewed

Total article views: 2,852 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,555 1,206 91 2,852 97 96
  • HTML: 1,555
  • PDF: 1,206
  • XML: 91
  • Total: 2,852
  • BibTeX: 97
  • EndNote: 96
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)

Cited

Saved

Latest update: 21 Nov 2024
Download
Altmetrics