Status: this preprint was under review for the journal ACP but the revision was not accepted.
The latitude dependence and probability distribution of polar mesospheric turbulence
M. Rapp,E. Becker,B. Strelnikov,and F.-J. Lübken
Abstract. We consider in-situ observations and results from a global circulation model to study the latitude dependence and probability distribution of polar mesospheric turbulence. A comparison of summer observations at 69° N and 79° N shows that mesospheric turbulence weakens towards the summer pole. Furthermore, these data suggest that at both latitudes in about ~70% of all samples there are non-turbulent altitude bins in the considered altitude range between 70 and 95 km. The remaining 30% with detectable turbulence show an approximately log-normal distribution of dissipation rates. A low-resolution model version with a gravity wave (GW) parameterization explains the observed latitude dependence as a consequence of a downshift of the breaking levels towards the summer pole and an accompanying decay of turbulent heating per unit mass. When we do not use a GW parameterization but employ a high spatial resolution instead to simulate GW effects explicitly, the model predicts a similar latitudinal dependence with weakening turbulence towards the summer pole. In addition, the model also produces a log-normal distribution of dissipation rates. The simulated probability distribution is more narrow than in the observations since the model resolves at most mid-frequency GWs, whereas real turbulence is also excited by smaller-scale disturbances. The GW resolving simulation suggests a weaker tropospheric GW source at polar latitudes as the dominating mechanism for the latitudinal dependence.
Received: 25 Sep 2006 – Discussion started: 28 Nov 2006
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.