Preprints
https://doi.org/10.5194/acpd-5-2559-2005
https://doi.org/10.5194/acpd-5-2559-2005
03 May 2005
 | 03 May 2005
Status: this preprint was under review for the journal ACP. A revision for further review has not been submitted.

Planetary waves in a coupled chemistry-climate model: analysis techniques and comparison with reanalysis data

F. Mager and M. Dameris

Abstract. This paper presents several analysis techniques relating to large-scale atmospheric waves. Such analysis tools allow the extraction of planetary waves from reanalysis or model datasets, and can contribute to a detailed insight into the forcing, propagation, and vertical structure of planetary waves, and their dynamic impact on the atmosphere. The different tools presented here use time series of space Fourier coefficients in order to extract transient and stationary wave parts by zonal wavenumbers, and to quantify their dynamic effect in the form of sensible heat and momentum fluxes. In this work, they have been applied to model results from the coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM (E39/C) (Hein et al., 2001) and to the ERA-15 reanalysis dataset from ECMWF. We show that E39/C qualitatively matches the variance distribution and vertical structure of transient waves from reanalysis data; quantitative differences can be traced back to the horizontal model resolution and the modelled zonal winds. The modelled polar vortex during Northern Hemisphere winter has previously been shown to be colder and more stable than observed (Hein et al., 2001; Schnadt et al., 2002; a possible explanation is that in the model experiment, a reduced heat flux by long transient waves at high latitudes disturbs and warms the polar vortex less than ERA-15 suggests, thereby leading to an overestimated stationary wavenumber 1 in E39/C. The results show that the tools used are well suited to investigate and estimate the impact of various dynamic processes related to large-scale waves.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
F. Mager and M. Dameris
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
F. Mager and M. Dameris
F. Mager and M. Dameris

Viewed

Total article views: 1,355 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
911 326 118 1,355 107 114
  • HTML: 911
  • PDF: 326
  • XML: 118
  • Total: 1,355
  • BibTeX: 107
  • EndNote: 114
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)

Saved

Latest update: 21 Nov 2024
Download
Altmetrics