Preprints
https://doi.org/10.5194/acpd-2-385-2002
https://doi.org/10.5194/acpd-2-385-2002
12 Apr 2002
 | 12 Apr 2002
Status: this preprint was under review for the journal ACP. A revision for further review has not been submitted.

The impact of a deep convection on sulfate transport and redistribution

V. Spiridonov and M. Curic

Abstract. A three-dimensional compressible cloud model was used to simulate the processes related to dynamics, microphysics and chemistry of continental non-polluted and continental polluted clouds. The chemical components are formulated in terms of continuity equations for different chemical species in the aqueous phase within the cloud. Their evolution in this model came from not only by the processes of advection and turbulence transport, but also the chemical reactions and microphysical transfers. The model includes a method of kinetic uptake limitations. Gases with low solubility H* < 103 mol dm-3 atm-1 are in Henry's law equilibrium with temperature dependence of Henry's law coefficients. Seven pollutant groups are currently included in the chemistry parameterization scheme: S(IV), S(VI), (H2O2), (O3), N(V), (NH3), (CO2). The present model contains explicit treatment of SO2 and O3, a kinetic method of gas uptake as well as an improved microphysical parameterization scheme. The primary objective of this model is to study the impact of the deep convection on the pollutant transport, redistribution and deposition. It is done through chemical reactions, oxidation, scavenging of aerosol particles and transfer via microphysical transitions among water categories. Two base run simulation parameters are used to initialize the model. The first model run is for the 6 July 1995 event, characterized by intensive convective cloud activity and a large amount of precipitation, manifested as a flashflood. The second one is related to transboundary dust transport and sulfate wet deposition. The chemical field initialization is based on the vertical distribution profiles of gases and aerosols for continental non-polluted and continental polluted background.

The study has revealed the importance of considering interactions between dynamics, microphysics and cloud chemistry. Deep convection in the first analyzed case generates rapid upward and downward transport of pollutants. It stimulates the impact of scavenging processes and microphysical conversions, pollutant redistribution and wet deposition.

We find good agreement between calculated and observed rainfall, pH, sulfate concentration and wet deposition, in the second simulated case. Aerosol particles partially dissolved in precipitation changed their qualitative and quantitative features, acidity and increment of all chemical components.

A lot of sensitivity tests of the terms included in the chemistry parameterization scheme indicate that assumption of Henry's law equilibrium leads to a factor 2 to 3 underestimate of a soluble gas in cloud water and 3 to 5 in rainwater, respectively. Our calculations demonstrate that assumption of Henry's law leads to a factor of about 1.0 to 1.3 overestimation of the integrated sulfur mass removed by wet deposition. Analysis of the relative contribution of some parameters implies that 20% - 24% of total sulfur mass deposited belongs to both nucleation and impact scavenging. Liquid phase oxidation contributed 22% and 28% of the total sulfur mass deposited for continental non-polluted and continental polluted background, respectively. Neglecting liquid-ice phase chemical reactions leads to underestimation of the total sulfur mass deposited by about a factor of 1.0 to 1.2 for continental non-polluted and continental polluted distributions, relative to the base run.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
V. Spiridonov and M. Curic
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
V. Spiridonov and M. Curic
V. Spiridonov and M. Curic

Viewed

Total article views: 1,340 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
875 308 157 1,340 138 122
  • HTML: 875
  • PDF: 308
  • XML: 157
  • Total: 1,340
  • BibTeX: 138
  • EndNote: 122
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)
Latest update: 13 Dec 2024
Download
Altmetrics