Preprints
https://doi.org/10.5194/acp-2021-954
https://doi.org/10.5194/acp-2021-954

  25 Nov 2021

25 Nov 2021

Review status: this preprint is currently under review for the journal ACP.

Aerosol radiative effects with dual view AOD retrievals

Stefan Kinne1, Peter North2, Kevin Pearson2, and Thomas Popp3 Stefan Kinne et al.
  • 1MPI-Meteorology, Hamburg, Germany
  • 2Swansea University, Swansea, Great Britain
  • 3DLR, Pberpfaffenhofen, Germany

Abstract. Seasonal maps of dual view retrieved mid-visible AOD and AODf for four selected years (1998, 2008, 2019, 2020) are introduced and assessed in comparisons to MODIS retrievals and general data of an aerosol climatology. Due to different sensor capabilities (ATSR-2, AATSR and SLSTR) there are still unresolved inconsistencies so that decadal regional trends are not as detectable as with MODIS retrievals. SLSTR retrieval, however, agree with MODIS retrievals that 2020 Covid impacts on AOD values (via comparisons to the pre-COVID 2019 reference) are at best minor and secondary to natural anomalies by wildfires and dust. In radiative transfer applications the dual view AOD data for the four years are processed in the MAC climatology environment to determine aerosol associated radiative effects for total aerosol and for anthropogenic aerosol. Even though the calculated radiative effects are affected by retrieval AOD retrieval tendencies, climate relevant TOA net-flux changes are consistent to result with AOD data from other satellite sensors and a general climatology: −0.9 W/m2 for total aerosol with a significant greenhouse effect and −0.8 and −0.2 W/m2 for anthropogenic aerosol with and without indirect effects, respectively. Aside from global averages, seasonal maps highlight the diversity of regional and seasonal radiative effects.

Stefan Kinne et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-954', Anonymous Referee #1, 14 Dec 2021
  • RC2: 'Review of Kinne et al.', Anonymous Referee #2, 05 Jan 2022

Stefan Kinne et al.

Stefan Kinne et al.

Viewed

Total article views: 317 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
225 83 9 317 3 5
  • HTML: 225
  • PDF: 83
  • XML: 9
  • Total: 317
  • BibTeX: 3
  • EndNote: 5
Views and downloads (calculated since 25 Nov 2021)
Cumulative views and downloads (calculated since 25 Nov 2021)

Viewed (geographical distribution)

Total article views: 312 (including HTML, PDF, and XML) Thereof 312 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Jan 2022
Download
Short summary
To monitor aerosol properties and quantify aerosol climate impacts, ESA's Climate Change Initiative (CCI) supported the retrieval development for their dual-view sensors. Global maps of monthly AOD and AODf data are presented for 4 years: 1998 using ATSR-2, 2008 using AATSR and 2019 and 2020 using SLSTR sensor data. Application goals of this paper are to address decadal aerosol trends, to identify possible Covid-19 impacts in 2020 and to associate retrieved AOD with climate impacts.
Altmetrics