Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Preprints
https://doi.org/10.5194/acp-2020-960
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2020-960
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  27 Oct 2020

27 Oct 2020

Review status
This preprint is currently under review for the journal ACP.

Departure from K-theory in the planetary boundary layer

Pedro Santos, Alfredo Peña, and Jakob Mann Pedro Santos et al.
  • DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark

Abstract. It is well known that when eddies are small, the eddy fluxes can be directly related to the mean vertical gradients, the so-called K-theory, but such relation becomes weaker the larger the coherent structures. Here, we show that this relation does not hold at heights relevant for wind energy applications. The relation implies that the angle (β) between the vector of vertical flux of horizontal momentum and the vector of the mean vertical gradient of horizontal velocity is zero, i.e., the vectors are aligned. This is not what we observe from measurements performed both offshore and onshore. We quantify the misalignment of β using measurements from a long-range Doppler profiling lidar and large-eddy simulations. We also use mesoscale model output from the New European Wind Atlas project to compare with the lidar-observed vertical profiles of wind speed, wind direction, momentum fluxes, and the angle between the horizontal velocity vector and the momentum flux vector up to 500 m both offshore and onshore, hence covering the rotor areas of modern wind turbines and beyond. The results show that within the range 100–500 m, β = −18° offshore and β = 12° onshore, on average. However, the large-eddy simulations show β ≈ 0°, partly confirming previous modeling results. We illustrate that mesoscale model output matches the observed mean wind speed and momentum fluxes well, but that this model output has significant deviations with the observations when looking at the turning of the wind.

Pedro Santos et al.

Interactive discussion

Status: open (until 22 Dec 2020)
Status: open (until 22 Dec 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Pedro Santos et al.

Pedro Santos et al.

Viewed

Total article views: 136 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
96 38 2 136 1 2
  • HTML: 96
  • PDF: 38
  • XML: 2
  • Total: 136
  • BibTeX: 1
  • EndNote: 2
Views and downloads (calculated since 27 Oct 2020)
Cumulative views and downloads (calculated since 27 Oct 2020)

Viewed (geographical distribution)

Total article views: 254 (including HTML, PDF, and XML) Thereof 252 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 24 Nov 2020
Publications Copernicus
Download
Short summary
We show that the vector of vertical flux of horizontal momentum and the vector of the mean vertical gradient of horizontal velocity are not aligned, based on Doppler wind lidar observations up to 500 m, both offshore and onshore. We illustrate that a mesoscale model output matches the observed mean wind speed and momentum fluxes well, but that this model output as well as idealized large-eddy simulations have deviations with the observations when looking at the turning of the wind.
We show that the vector of vertical flux of horizontal momentum and the vector of the mean...
Citation
Altmetrics