the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary organic aerosol formation from photooxidation of furan: effects of NOx level and humidity
Abstract. Atmospheric furan is both primary and secondary pollutants in the atmosphere, and their emission contributes to the formation of ultrafine particles and ground-level ozone. We investigate the effects of NOx level and humidity on the formation of secondary organic aerosol (SOA) generated from the photooxidation of furan in the presence of NaCl seed particles. The particle mass concentration and size distribution were determined with a scanning mobility particle sizer (SMPS). SOA mass concentration and yield were determined under different NOx and humidity levels. Owing to condensation and coagulation, the particle number concentration decreases with increasing particle size. A significant difference is observed both in the SOA mass concentration and SOA yield variation with the initial experiment conditions. A relatively high NOx level, ranging from 16.8 to 97.5 ppb, contributes to effective formation of SOA in the presence of NaCl seed particles, with the mass concentration of SOA and SOA yield ranging from 0.96 μg m−3 to 23.46 μg m−3 and from 0.04 % to 1.01 %, respectively. Likewise, the SOA mass concentration and yield increase with increasing humidity, because the increasing RH increases the aerosol liquid water content, which contributes to the liquid phase reactions. Nine organic nitrate species were detected by electrospray ionization exactive orbitrap mass spectrometry (ESI-Exactive-Orbitrap MS). The -COOH,-OH,-C = O and NO2 functional groups were assigned in the FTIR spectra and used as the indicator for the mechanism inference. The present study directly addresses NOx effects and reinforces the implication of humidity on SOA formation during the furan-NOx-NaCl photooxidation. Furthermore, the results illustrate the importance of studying SOA formation over a comprehensive range of environmental conditions. Only such evaluations can induce meaningful SOA mechanisms to be implemented in air quality models.
- Preprint
(1550 KB) - Metadata XML
-
Supplement
(746 KB) - BibTeX
- EndNote
-
RC1: 'Review for ACP-2018-477 By Xiaotong Jiang et al', Anonymous Referee #2, 29 Jul 2018
- AC1: 'response', Lin Du, 18 Oct 2018
-
RC2: 'Review', Anonymous Referee #1, 06 Sep 2018
- AC2: 'response2', Lin Du, 18 Oct 2018
-
RC1: 'Review for ACP-2018-477 By Xiaotong Jiang et al', Anonymous Referee #2, 29 Jul 2018
- AC1: 'response', Lin Du, 18 Oct 2018
-
RC2: 'Review', Anonymous Referee #1, 06 Sep 2018
- AC2: 'response2', Lin Du, 18 Oct 2018
Viewed
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,722 | 496 | 71 | 2,289 | 205 | 81 | 68 |
- HTML: 1,722
- PDF: 496
- XML: 71
- Total: 2,289
- Supplement: 205
- BibTeX: 81
- EndNote: 68
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
Cited
3 citations as recorded by crossref.
- Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies A. Hodshire et al. 10.1021/acs.est.9b02588
- Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile Organic Compounds H. Jiang et al. 10.1021/acs.estlett.9b00017
- Secondary Organic Aerosol Formation from the OH Oxidation of Phenol, Catechol, Styrene, Furfural, and Methyl Furfural M. Schueneman et al. 10.1021/acsearthspacechem.3c00361