Preprints
https://doi.org/10.5194/acp-2017-888
https://doi.org/10.5194/acp-2017-888
16 Oct 2017
 | 16 Oct 2017
Status: this preprint has been withdrawn by the authors.

Estimating Surface Carbon Fluxes Based on a Local Ensemble Transform Kalman Filter with a Short Assimilation Window and a Long Observation Window

Yun Liu, Eugenia Kalnay, Ning Zeng, Ghassem Asrar, Zhaohui Chen, and Binghao Jia

Abstract. We developed a Carbon data assimilation system to estimate the surface carbon fluxes using the Local Ensemble Transform Kalman Filter and atmospheric transfer model of GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological fields based on the Goddard Earth Observing System Model, Version 5 (GEOS-5). This assimilation system is inspired by the method of Kang et al. [2011, 2012], who estimated the surface carbon fluxes in an Observing System Simulation Experiment (OSSE) mode, as evolving parameters in the assimilation of the atmospheric CO2, using a short assimilation window of 6 hours. They included the assimilation of the standard meteorological variables, so that the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing new techniques such as variable localization, and increased observation weights near the surface, they obtained accurate carbon fluxes at grid point resolution. We developed a new version of the LETKF related to the Running-in-Place (RIP) method used to accelerate the spin-up of EnKF data assimilation [Kalnay and Yang, 2010; Wang et al., 2013, Yang et al., 2014]. Like RIP, the new assimilation system uses the no-cost smoothing algorithm for the LETKF [Kalnay et al., 2007b], which allows shifting at no cost the Kalman Filter solution forward or backward within an assimilation window. In the new scheme a long observation window (e.g., 7-days or longer) is used to create an LETKF ensemble at 7-days. Then, the RIP smoother is used to obtain an accurate final analysis at 1-day. This analysis has the advantage of being based on a short assimilation window, which makes it more accurate, and of having been exposed to the future 7-days observations, which accelerates the spin up. The assimilation and observation windows are then shifted forward by one day, and the process is repeated. This reduces significantly the analysis error, suggesting that this method could be used in other data assimilation problems.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Yun Liu, Eugenia Kalnay, Ning Zeng, Ghassem Asrar, Zhaohui Chen, and Binghao Jia

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Yun Liu, Eugenia Kalnay, Ning Zeng, Ghassem Asrar, Zhaohui Chen, and Binghao Jia
Yun Liu, Eugenia Kalnay, Ning Zeng, Ghassem Asrar, Zhaohui Chen, and Binghao Jia

Viewed

Total article views: 1,865 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,528 275 62 1,865 59 62
  • HTML: 1,528
  • PDF: 275
  • XML: 62
  • Total: 1,865
  • BibTeX: 59
  • EndNote: 62
Views and downloads (calculated since 16 Oct 2017)
Cumulative views and downloads (calculated since 16 Oct 2017)

Viewed (geographical distribution)

Total article views: 1,872 (including HTML, PDF, and XML) Thereof 1,870 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 12 Nov 2024
Download

This preprint has been withdrawn.

Short summary
We developed a new Carbon data assimilation system to estimate the surface carbon fluxes using the LETKF and GEOS-Chem model, which uses a new scheme with a short assimilation window and a long observation window. The analysis is more accurate with the short assimilation window and is exposed to the future observations accelerating the spin up. In OSSE, the system reduces significantly the analysis error, suggesting that this method could be used in other data assimilation problems.
Altmetrics