Resolving ozone vertical gradients in air quality models
Katherine R. Travis,Daniel J. Jacob,Christoph A. Keller,Shi Kuang,Jintai Lin,Michael J. Newchurch,and Anne M. Thompson
Abstract. Models severely overestimate surface ozone in the Southeast US during summertime and this overestimation has implications for the design of air quality regulations. We use the GEOS-Chem model to interpret ozone observations from aircraft (SEAC4RS), ozonesondes (SEACIONS), and surface sites (CASTNET) in August–September 2013. After correcting for a 30–50 % NOx emission overestimate in the US EPA National Emission Inventory, we find that the model is unbiased relative to aircraft observations below 1 km. However, surface observations of maximum daily 8-h average (MDA8) ozone are still biased high in the model (averaging 48 ± 9 ppb) compared to observations (40 ± 9 ppb). The low tail in the observations (MDA8 ozone < 25 ppb) is associated with rain and is not captured by the model. The model bias decreases by 3 ppb when accounting for the subgrid vertical gradient between the lowest model level (centered 60 m above ground) and the measurement altitude (10 m). The model underestimates low cloud cover, but this underestimate is insufficient to explain the remaining surface ozone bias because the response of model ozone to cloud cover is weaker than observed. Midday ozonesondes at Huntsville, Alabama show mean decreases in ozone from 1 km to the surface of 4 ppb under clear-sky and 7 ppb under low cloud, whereas the model decreases by only 1 ppb under both conditions. By contrast, potential temperature below 1 km is well-mixed in both the observations and the model. The observations thus imply a strong asymmetry between top-down and bottom-up mixing that is missing from GEOS-Chem and appears to be insufficiently represented in current air quality models. A sensitivity simulation reducing top-down eddy diffusion and removing top-down non-local vertical transport of ozone can reproduce the observed ozone gradients in the mixed layer.
This preprint has been retracted.
Received: 27 Jun 2017 – Discussion started: 01 Aug 2017
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
Michael J. Newchurch
Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, AL 35805, USA
Models severely overestimate surface ozone in the Southeast US during summertime which has implications for the design of air quality regulations. We use a model (GEOS-Chem) to interpret ozone observations from a suite of observations taken during August–September 2013. The model is unbiased relative to observations below 1 km but is biased high at the surface. We attribute this bias to model representation error, an underestimate in low-cloud, and insufficient treatment of vertical mixing.
Models severely overestimate surface ozone in the Southeast US during summertime which has...