Preprints
https://doi.org/10.5194/acp-2016-625
https://doi.org/10.5194/acp-2016-625
15 Jul 2016
 | 15 Jul 2016
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Temperature-dependence of aerosol optical depth over the southeastern US

Tero Mielonen, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, Antti Arola, Gerrit de Leeuw, and Harri Kokkola

Abstract. Previous studies have indicated that summer-time aerosol optical depths (AOD) over the southeastern US are dependent on temperature but the reason for this dependence and its radiative effects have so far been unclear. To quantify these effects we utilized AOD and land surface temperature (LST) products from the Advanced Along-Track Scanning Radiometer (AATSR) with observations of tropospheric nitrogen dioxide (NO2) column densities from the Ozone Monitoring Instrument (OMI). Furthermore, simulations of the global aerosol-climate model ECHAM-HAMMOZ have been used to identify the possible processes affecting aerosol loads and their dependence on temperature over the studied region. Our results showed that the level of AOD in the southeastern US is mainly governed by anthropogenic emissions but the observed temperature dependent behaviour is most likely originating from non-anthropogenic emissions. Model simulations indicated that biogenic emissions of volatile organic compounds (BVOC) can explain the observed temperature dependence of AOD. According to the remote sensing data sets, the non-anthropogenic contribution increases AOD by approximately 0.009 ± 0.018 K−1 while the modelled BVOC emissions increase AOD by 0.022 ± 0.002 K−1. Consequently, the regional direct radiative effect (DRE) of the non-anthropogenic AOD is −0.43 ± 0.88 W/m2/K and −0.17 ± 0.35 W/m2/K for clear- and all-sky conditions, respectively. The model estimate of the regional clear-sky DRE for biogenic aerosols is also in the same range: −0.86 ± 0.06 W/m2/K. These DRE values indicate significantly larger cooling than the values reported for other forested regions. Furthermore, the model simulations showed that biogenic emissions increased the number of biogenic aerosols with radius larger than 100 nm (N100, proxy for cloud condensation nuclei) by 28 % per one degree temperature increase. For the total N100, the corresponding increase was 4 % which implies that biogenic emissions could also have a small effect on indirect radiative forcing in this region.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Tero Mielonen, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, Antti Arola, Gerrit de Leeuw, and Harri Kokkola
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Tero Mielonen, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, Antti Arola, Gerrit de Leeuw, and Harri Kokkola
Tero Mielonen, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, Antti Arola, Gerrit de Leeuw, and Harri Kokkola

Viewed

Total article views: 2,356 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,765 481 110 2,356 208 109 119
  • HTML: 1,765
  • PDF: 481
  • XML: 110
  • Total: 2,356
  • Supplement: 208
  • BibTeX: 109
  • EndNote: 119
Views and downloads (calculated since 15 Jul 2016)
Cumulative views and downloads (calculated since 15 Jul 2016)

Cited

Saved

Latest update: 21 Jan 2025
Download
Short summary
We studied the temperature dependence of AOD and its radiative effects over the southeastern US. We used spaceborne observations of AOD, LST and tropospheric NO2 with simulations of ECHAM-HAMMOZ. The level of AOD in this region is governed by anthropogenic emissions but the temperature dependency is most likely caused by BVOC emissions. According to the observations and simulations, the regional clear-sky DRE for biogenic aerosols is −0.43 ± 0.88 W/m2/K and −0.86 ± 0.06 W/m2/K, respectively.
Altmetrics