Preprints
https://doi.org/10.5194/acpd-13-27243-2013
https://doi.org/10.5194/acpd-13-27243-2013
21 Oct 2013
 | 21 Oct 2013
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes

L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang

Abstract. Despite a large volume of research over a number of years, our understandings of the key precursors that control tropospheric ozone production and the impacts of heterogeneous processes remain incomplete. In this study, we analyze measurements of ozone and its precursors made at rural/suburban sites downwind of four large Chinese cities – Beijing, Shanghai, Guangzhou and Lanzhou. At each site the same measurement techniques were utilized and a photochemical box model based on the Master Chemical Mechanism (v3.2) was applied, to minimize uncertainties in comparison of the results due to differences in methodology. All four cities suffered from severe ozone pollution. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high ozone levels (up to an hourly value of 286 ppbv), while the pollution observed at the suburban sites of Shanghai, Guangzhou and Lanzhou was characterized by intense in-situ ozone production. The major anthropogenic hydrocarbons were alkenes and aromatics in Beijing and Shanghai, aromatics in Guangzhou, and alkenes in Lanzhou. The ozone production was found to be in a VOCs-limited regime in both Shanghai and Guangzhou, and a mixed regime in Lanzhou. In Shanghai, the ozone formation was most sensitive to aromatics and alkenes, while in Guangzhou aromatics were the predominant ozone precursors. In Lanzhou, either controlling NOx or reducing emissions of olefins from the petrochemical industry would mitigate the local ozone production. The potential impacts of several heterogeneous processes on the ozone formation were assessed. The hydrolysis of dinitrogen pentoxide (N2O5), uptake of the hydroperoxyl radical (HO2) on particles, and surface reactions of NO2 forming nitrous acid (HONO) present considerable sources of uncertainty in the current studies of ozone chemistry. Further efforts are urgently required to better understand these processes and refine atmospheric models.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang

Viewed

Total article views: 2,651 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,789 699 163 2,651 107 115
  • HTML: 1,789
  • PDF: 699
  • XML: 163
  • Total: 2,651
  • BibTeX: 107
  • EndNote: 115
Views and downloads (calculated since 21 Oct 2013)
Cumulative views and downloads (calculated since 21 Oct 2013)

Cited

Saved

Latest update: 10 Sep 2024
Download
Altmetrics