Status: this preprint was under review for the journal ACP but the revision was not accepted.
Aerosol direct radiative forcing during Sahara dust intrusions in the central Mediterranean
M. R. Perrone,A. Bergamo,and V. Bellantone
Abstract. The clear-sky, instantaneous Direct Radiative Effect (DRE) by all and anthropogenic particles is calculated during Sahara dust intrusions in the Mediterranean basin, to evaluate the role of anthropogenic particle's radiative effects and to get a better estimate of the DRE by desert dust. The clear-sky aerosol DRE is calculated by a two stream radiative transfer model in the solar (0.3–4 μm) and infrared (4–200 μm) spectral range, at the top of the atmosphere (ToA) and at the Earth's surface (sfc). Aerosol optical properties by AERONET sun-sky photometer measurements and aerosol vertical profiles by EARLINET lidar measurements, both performed at Lecce (40.33° N, 18.10° E) during Sahara dust intrusions occurred from 2003 to 2006 year, are used to initialize radiative transfer simulations. Instantaneous values at 0.44 μm of the real (n) and imaginary (k) refractive index and of the of aerosol optical depth (AOD) vary within the 1.33–1.55, 0.0037–0.014, and 0.2–0.7 range, respectively during the analyzed dust outbreaks. Fine mode particles contribute from 34% to 85% to the AOD by all particles. The complex atmospheric chemistry of the Mediterranean basin that is also influenced by regional and long-range transported emissions from continental Europe and the dependence of dust optical properties on soil properties of source regions and transport pathways are responsible for the high variability of n, k, and AOD values and of the fine mode particle contribution. Instantaneous net (solar+infrared) DREs that are negative as a consequence of the cooling effect by aerosol particles, span the – (32–10) W m−2 and the – (44–20) W m−2 range at the ToA and surface, respectively. The instantaneous net DRE by anthropogenic particles that is negative, varies within −(13–8) W m−2 and −(17–11) W m−2 at the ToA and surface, respectively. It represents from 41 up to 89% and from 36 up to 67% of the net DRE by all particles at the ToA and surface, respectively. A linear relationship to calculate the DRE by natural particles in the solar and infrared spectral range is provided.
Received: 20 Jul 2009 – Discussion started: 23 Oct 2009
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.