Aeolus data and their application (AMT/ACP/WCD inter-journal SI)(AMT/ACP/WCD inter-journal SI)
Aeolus data and their application (AMT/ACP/WCD inter-journal SI)(AMT/ACP/WCD inter-journal SI)
Editor(s): ACP co-editors | Coordinators: Peter Haynes and Geraint Vaughan | Co-organizers: Ad Stoffelen, Anne Grete Straume-Lindner, and Oliver Reitebuch Special issue jointly organized between Atmospheric Measurement Techniques, Atmospheric Chemistry and Physics, and Weather and Climate Dynamics More information

Download citations of all papers

06 May 2022
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022,https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary
14 Apr 2022
The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022,https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
16 Mar 2022
Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022,https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
11 Mar 2022
Retrieval improvements for the ALADIN Airborne Demonstrator in support of the Aeolus wind product validation
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022,https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
02 Mar 2022
Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022,https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
25 Feb 2022
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-63,https://doi.org/10.5194/amt-2022-63, 2022
Preprint under review for AMT (discussion: final response, 4 comments)
Short summary
14 Feb 2022
Dust transport and advection measurement with spaceborne lidars ALADIN, CALIOP and model reanalysis data
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-53,https://doi.org/10.5194/acp-2022-53, 2022
Revised manuscript under review for ACP (discussion: final response, 4 comments)
Short summary
27 Jan 2022
Statistical validation of Aeolus L2A particle backscatter coefficient retrievals over ACTRIS/EARLINET stations on the Iberian Peninsula
Jesús Abril-Gago, Juan Luis Guerrero-Rascado, Maria João Costa, Juan Antonio Bravo-Aranda, Michaël Sicard, Diego Bermejo-Pantaleón, Daniele Bortoli, María José Granados-Muñoz, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Adolfo Comerón, Pablo Ortiz-Amezcua, Vanda Salgueiro, Marta María Jiménez-Martín, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 22, 1425–1451, https://doi.org/10.5194/acp-22-1425-2022,https://doi.org/10.5194/acp-22-1425-2022, 2022
Short summary
18 Jan 2022
A Statistically Optimal Analysis of Systematic Differences between Aeolus HLOS Winds and NOAA’s Global Forecast System
Hui Liu, Kevin Garrett, Kayo Ide, Ross Hoffman, and Katherine Lukens
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-20,https://doi.org/10.5194/amt-2022-20, 2022
Revised manuscript under review for AMT (discussion: final response, 4 comments)
Short summary
11 Jan 2022
Optimization of Aeolus' aerosol optical properties by maximum-likelihood estimation
Frithjof Ehlers, Thomas Flament, Alain Dabas, Dimitri Trapon, Adrien Lacour, Holger Baars, and Anne Grete Straume-Lindner
Atmos. Meas. Tech., 15, 185–203, https://doi.org/10.5194/amt-15-185-2022,https://doi.org/10.5194/amt-15-185-2022, 2022
Short summary
05 Jan 2022
Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022,https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
20 Dec 2021
Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5
Corwin J. Wright, Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour
Weather Clim. Dynam., 2, 1283–1301, https://doi.org/10.5194/wcd-2-1283-2021,https://doi.org/10.5194/wcd-2-1283-2021, 2021
Short summary
16 Dec 2021
Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021,https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
25 Nov 2021
On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-381,https://doi.org/10.5194/amt-2021-381, 2021
Revised manuscript accepted for AMT (discussion: closed, 4 comments)
Short summary
17 Nov 2021
Correction of wind bias for the lidar on board Aeolus using telescope temperatures
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021,https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
17 Nov 2021
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
Hironori Iwai, Makoto Aoki, Mitsuru Oshiro, and Shoken Ishii
Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021,https://doi.org/10.5194/amt-14-7255-2021, 2021
Short summary
28 Sep 2021
ALADIN laser frequency stability and its impact on the Aeolus wind error
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021,https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
02 Sep 2021
Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome
Susanna Hagelin, Roohollah Azad, Magnus Lindskog, Harald Schyberg, and Heiner Körnich
Atmos. Meas. Tech., 14, 5925–5938, https://doi.org/10.5194/amt-14-5925-2021,https://doi.org/10.5194/amt-14-5925-2021, 2021
Short summary
19 Aug 2021
Validation of the Aeolus Level-2B wind product over Northern Canada and the Arctic
Chih-Chun Chou, Paul J. Kushner, Stéphane Laroche, Zen Mariani, Peter Rodriguez, Stella Melo, and Christopher G. Fletcher
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-247,https://doi.org/10.5194/amt-2021-247, 2021
Revised manuscript under review for AMT (discussion: final response, 4 comments)
Short summary
06 Aug 2021
Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden
Evgenia Belova, Sheila Kirkwood, Peter Voelger, Sourav Chatterjee, Karathazhiyath Satheesan, Susanna Hagelin, Magnus Lindskog, and Heiner Körnich
Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021,https://doi.org/10.5194/amt-14-5415-2021, 2021
Short summary
02 Aug 2021
Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021,https://doi.org/10.5194/acp-21-11489-2021, 2021
Short summary
29 Jul 2021
Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021,https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
07 Jul 2021
Relationship between wind observation accuracy and the ascending node of the sun-synchronous orbit for the Aeolus-type spaceborne Doppler wind lidar
Chuanliang Zhang, Xuejin Sun, Wen Lu, Yingni Shi, Naiying Dou, and Shaohui Li
Atmos. Meas. Tech., 14, 4787–4803, https://doi.org/10.5194/amt-14-4787-2021,https://doi.org/10.5194/amt-14-4787-2021, 2021
Short summary
28 Jun 2021
Sensitivity of Aeolus HLOS winds to temperature and pressure specification in the L2B processor
Matic Šavli, Vivien Pourret, Christophe Payan, and Jean-François Mahfouf
Atmos. Meas. Tech., 14, 4721–4736, https://doi.org/10.5194/amt-14-4721-2021,https://doi.org/10.5194/amt-14-4721-2021, 2021
Short summary
14 Jun 2021
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021,https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
10 Jun 2021
Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021,https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
18 Mar 2021
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021,https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
26 Feb 2021
Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021,https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
11 Nov 2020
Validation of Aeolus wind products above the Atlantic Ocean
Holger Baars, Alina Herzog, Birgit Heese, Kevin Ohneiser, Karsten Hanbuch, Julian Hofer, Zhenping Yin, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020,https://doi.org/10.5194/amt-13-6007-2020, 2020
Short summary
21 Aug 2020
Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX)
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020,https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
15 May 2020
First validation of Aeolus wind observations by airborne Doppler wind lidar measurements
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, and Fabian Weiler
Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020,https://doi.org/10.5194/amt-13-2381-2020, 2020
Short summary
23 Apr 2020
Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020,https://doi.org/10.5194/amt-13-2075-2020, 2020
Short summary
31 Mar 2020
Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations
Sergey M. Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, Jacques Porteneuve, Jean-Francois Mariscal, and Jerome Schmitt
Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020,https://doi.org/10.5194/amt-13-1501-2020, 2020
Short summary
05 Feb 2020
Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration
Xiaochun Zhai, Uwe Marksteiner, Fabian Weiler, Christian Lemmerz, Oliver Lux, Benjamin Witschas, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 445–465, https://doi.org/10.5194/amt-13-445-2020,https://doi.org/10.5194/amt-13-445-2020, 2020
Short summary
CC BY 4.0