Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 9, issue 3
Atmos. Chem. Phys., 9, 981–994, 2009
https://doi.org/10.5194/acp-9-981-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 9, 981–994, 2009
https://doi.org/10.5194/acp-9-981-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  09 Feb 2009

09 Feb 2009

The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases

A. A. Turnipseed1,5, S. N. Pressley2, T. Karl1,5, B. Lamb2, E. Nemitz3, E. Allwine2, W. A. Cooper4, S. Shertz5, and A. B. Guenther1,5 A. A. Turnipseed et al.
  • 1Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000 Boulder, CO 80307, USA
  • 2Dept. of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
  • 3Center for Ecology and Hydrology (CEH), Edinburgh, UK
  • 4Earth Observing Laboratory, National Center for Atmospheric Research, P.O. Box 3000 Boulder, CO 80307, USA
  • 5The Institute for Integrative and Multidisciplinary Earth Studies (TIIMES), National Center for Atmospheric Research, P.O. Box 3000 Boulder, CO 80307, USA

Abstract. The concept of disjunct eddy sampling (DES) for use in measuring ecosystem-level micrometeorological fluxes is re-examined. The governing equations are discussed as well as other practical considerations and guidelines concerning this sampling method as it is applied to either the disjunct eddy covariance (DEC) or disjunct eddy accumulation (DEA) techniques. A disjunct eddy sampling system was constructed that could either be combined with relatively slow sensors (response time of 2 to 40 s) to measure fluxes using DEC, or could also be used to accumulate samples in stable reservoirs for later laboratory analysis (DEA technique). Both the DEC and DEA modes of this sampler were tested against conventional eddy covariance (EC) for fluxes of either CO2 (DEC) or isoprene (DEA). Good agreement in both modes was observed relative to the EC systems. However, the uncertainty in a single DEA flux measurement was considerable (~40%) due to both the reduced statistical sampling and the analytical precision of the concentration difference measurements. We have also re-investigated the effects of nonzero mean vertical wind velocity on accumulation techniques as it relates to our DEA measurements. Despite the higher uncertainty, disjunct eddy sampling can provide an alternative technique to eddy covariance for determining ecosystem-level fluxes for species where fast sensors do not currently exist.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint