Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 9, issue 17
Atmos. Chem. Phys., 9, 6389–6400, 2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 9, 6389–6400, 2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  04 Sep 2009

04 Sep 2009

Impact of tropospheric nitrogen dioxide on the regional radiation budget

A. P. Vasilkov1, J. Joiner2, L. Oreopoulos2, J. F. Gleason2, P. Veefkind3, E. Bucsela4, E. A. Celarier5, R. J. D. Spurr6, and S. Platnick2 A. P. Vasilkov et al.
  • 1Science Systems and Applications Inc., Lanham, MD, USA
  • 2Goddard Space Flight Center, Greenbelt, MD, USA
  • 3Royal Netherlands Meteorological Institute (KNMI), de Bilt, The Netherlands
  • 4SRI International, Menlo Park, CA, USA
  • 5University of Maryland, Baltimore County, USA
  • 6RT Solutions, Cambridge, MA, USA

Abstract. Following the launch of several satellite ultraviolet and visible spectrometers including the Ozone Monitoring Instrument (OMI), much has been learned about the global distribution of nitrogen dioxide (NO2). NO2, which is mostly anthropogenic in origin, absorbs solar radiation at ultraviolet and visible wavelengths. We parameterized NO2 absorption for fast radiative transfer calculations. Using this parameterization with cloud, surface, and NO2 information from different sensors in the NASA A-train constellation of satellites and NO2 profiles from the Global Modeling Initiative (GMI), we compute the global distribution of net atmospheric heating (NAH) due to tropospheric NO2 for January and July 2005. The globally-averaged NAH values due to tropospheric NO2 are very low: they are about 0.05 W/m2. While the impact of NO2 on the global radiative forcing is small, locally it can produce instantaneous net atmospheric heating of 2–4 W/m2 in heavily polluted areas. We assess the impact of clouds and find that they reduce the globally-averaged NAH values by 5–6% only. However, because most of NO2 is contained in the boundary layer in polluted regions, the cloud shielding effect can significantly reduce the net atmospheric heating due to tropospheric NO2 (up to 50%). We examine the effect of diurnal variations in NO2 emissions and chemistry on net atmospheric heating and find only a small impact of these on the daily-averaged heating (11–14% at the most). We also examine the sensitivity of NO2 absorption to various geophysical conditions. Effects of the vertical distributions of cloud optical depth and NO2 on net atmospheric heating and downwelling radiance are simulated in detail for various scenarios including vertically-inhomogeneous convective clouds observed by CloudSat. The maximum effect of NO2 on downwelling radiance occurs when the NO2 is located in the middle part of the cloud where the optical extinction peaks.

Publications Copernicus
Final-revised paper