Articles | Volume 9, issue 14
15 Jul 2009
 | 15 Jul 2009

Modelling multi-phase halogen chemistry in the remote marine boundary layer: investigation of the influence of aerosol size resolution on predicted gas- and condensed-phase chemistry

D. Lowe, D. Topping, and G. McFiggans

Abstract. A coupled box model of photochemistry and aerosol microphysics which explicitly accounts for size-dependent chemical properties of the condensed-phase has been developed to simulate the multi-phase chemistry of chlorine, bromine and iodine in the marine boundary layer (MBL). The model contains separate seasalt and non-seasalt modes, each of which may be composed of 1–16 size-bins. By comparison of gaseous and aerosol compositions predicted using different size-resolutions with both fixed and size-dependent aerosol turnover rates, it was found that, for halogen-activation processes, the physical property initialisation of the aerosol-mode has a significant influence on gas-phase chemistry. Failure to adequately represent the appropriate physical properties can lead to substantial errors in gas-phase chemistry. The size-resolution of condensed-phase composition has a less significant influence on gas-phase chemistry.

Final-revised paper