Articles | Volume 9, issue 10
https://doi.org/10.5194/acp-9-3371-2009
https://doi.org/10.5194/acp-9-3371-2009
26 May 2009
 | 26 May 2009

Impact of stratospheric intrusions and intercontinental transport on ozone at Jungfraujoch in 2005: comparison and validation of two Lagrangian approaches

J. Cui, M. Sprenger, J. Staehelin, A. Siegrist, M. Kunz, S. Henne, and M. Steinbacher

Abstract. The particle dispersion model FLEXPART and the trajectory model LAGRANTO are Lagrangian models which are widely used to study synoptic-scale atmospheric air flows such as stratospheric intrusions (SI) and intercontinental transport (ICT). In this study, we focus on SI and ICT events particularly from the North American planetary boundary layer for the Jungfraujoch (JFJ) measurement site, Switzerland, in 2005. Two representative cases of SI and ICT are identified based on measurements recorded at Jungfraujoch and are compared with FLEXPART and LAGRANTO simulations, respectively. Both models well capture the events, showing good temporal agreement between models and measurements. In addition, we investigate the performance of FLEXPART and LAGRANTO on representing SI and ICT events over the entire year 2005 in a statistical way. We found that the air at JFJ is influenced by SI during 19% (FLEXPART) and 18% (LAGRANTO), and by ICT from the North American planetary boundary layer during 13% (FLEXPART) and 12% (LAGRANTO) of the entire year. Through intercomparsion with measurements, our findings suggest that both FLEXPART and LAGRANTO are well capable of representing SI and ICT events if they last for more than 12 h, whereas both have problems on representing short events. For comparison with in-situ observations we used O3 and relative humidity for SI events. As parameters to trace ICT events we used a combination of NOy/CO and CO, however these parameters are not specific enough to distinguish aged air masses by their source regions. Moreover, a sensitivity study indicates that the agreement between models and measurements depends significantly on the threshold values applied to the individual control parameters. Generally, the less strict the thresholds are, the better the agreement between models and measurements. Although the dependence of the agreement on the threshold values is appreciable, it nevertheless confirms the conclusion that both FLEXPART and LAGRANTO are well able to capture SI and ICT events with duration longer than 12 h.

Download
Altmetrics
Final-revised paper
Preprint