Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 8, issue 22
Atmos. Chem. Phys., 8, 6839–6864, 2008
https://doi.org/10.5194/acp-8-6839-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: AMMA Tropospheric Chemistry and Aerosols

Atmos. Chem. Phys., 8, 6839–6864, 2008
https://doi.org/10.5194/acp-8-6839-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  28 Nov 2008

28 Nov 2008

Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0

J.-C. Raut and P. Chazette J.-C. Raut and P. Chazette
  • Laboratoire des Sciences du Climat et de l'Environnement, Laboratoire mixte CEA-CNRS-UVSQ, CEA Saclay, 91191 Gif-sur-Yvette, France

Abstract. This paper presents radiative transfer calculations performed over Niamey in the UV-Visible range over the period 26th January–1st February 2006 during the African Multidisciplinary Monsoon Analysis (AMMA) international program. Climatic effects of aerosols along the vertical column have required an accurate determination of their optical properties, which are presented here for a variety of instrumented platforms: Ultralight aircraft, Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, AERONET station. Measurements highlighted the presence of a multi-layered structure of mineral dust located below and biomass-burning particles in the more elevated layers. Radiative forcing was affected by both the scattering and absorption effects governed by the aerosol complex refractive index (ACRI). The best agreement between our results and AERONET optical thicknesses, ground-based extinction measurements and NO2 photolysis rate coefficient was found using the synergy between all the instrumented platforms. The corresponding averaged ACRI at 355 nm were 1.53 (±0.04) −0.047i (±0.006) and 1.52 (±0.04) −0.008i (±0.001) for biomass-burning and mineral dust aerosols, respectively. Biomass-burning aerosols were characterized by single-scattering albedo ranging from 0.78 to 0.82 and asymmetry parameter ranging from 0.71 to 0.73. For dust aerosols, single-scattering albedo (asymmetry parameter) ranged from 0.9 to 0.92 (0.73 to 0.75). The solar energy depletion at the surface is shown to be ~−21.2 (±1.7) W/m2 as a daily average. At the TOA, the radiative forcing appeared slightly negative but very close to zero (~−1.4 W/m2). The corresponding atmospheric radiative forcing was found to be ~19.8 (±2.3) W/m2. Mineral dust located below a more absorbing layer act as an increase in surface reflectivity of ~3–4%. The radiative forcing is also shown to be highly sensitive to the optical features of the different aerosol layers (ACRI, optical thickness and aerosol vertical distribution).

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint