Articles | Volume 8, issue 3
Atmos. Chem. Phys., 8, 603–623, 2008
https://doi.org/10.5194/acp-8-603-2008
Atmos. Chem. Phys., 8, 603–623, 2008
https://doi.org/10.5194/acp-8-603-2008

  08 Feb 2008

08 Feb 2008

Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

N. Hock1, J. Schneider1, S. Borrmann1,2, A. Römpp3,*, G. Moortgat3, T. Franze4, C. Schauer4, U. Pöschl4,**, C. Plass-Dülmer5, and H. Berresheim5,*** N. Hock et al.
  • 1Particle Chemistry Dept., Max Planck Institute for Chemistry, Mainz, Germany
  • 2Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
  • 3Atmospheric Chemistry Dept., Max Planck Institute for Chemistry, Mainz, Germany
  • 4Institute of Hydrochemistry, Technical University of Munich, Germany
  • 5German National Meteorological Service (DWD), Observatory Hohenpeissenberg, Germany
  • *now at: Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany
  • **now at: Biogeochemistry Dept., Max Planck Institute for Chemistry, Mainz, Germany
  • ***now at: Dept. of Physics, National University of Ireland, Galway, Ireland

Abstract. Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany.

Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins).

Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m−3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m−3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics.

The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m−3) and EC (<1 μg m−3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes).

New particle formation was observed almost every day with particle number concentrations exceeding 104 cm−3 (nighttime background level 1000–2000 cm−3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth.

Download
Altmetrics
Final-revised paper
Preprint