Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 5, issue 2
Atmos. Chem. Phys., 5, 393–408, 2005
https://doi.org/10.5194/acp-5-393-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Probing the atmosphere in three dimensions for SCIAMACHY

Atmos. Chem. Phys., 5, 393–408, 2005
https://doi.org/10.5194/acp-5-393-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  10 Feb 2005

10 Feb 2005

Using a photochemical model for the validation of NO2 satellite measurements at different solar zenith angles

A. Bracher, M. Sinnhuber, A. Rozanov, and J. P. Burrows A. Bracher et al.
  • Institute of Environmental Physics and Remote Sensing (IUP/IFE), University of Bremen, Otto-Hahn-Allee 1, 28334 Bremen, Germany

Abstract. SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography) aboard the recently launched Environmental Satellite (ENVISAT) of ESA is measuring solar radiance upwelling from the atmosphere and the extraterrestrial irradiance. Appropriate inversion of the ultraviolet and visible radiance measurements, observed from the atmospheric limb, yields profiles of nitrogen dioxide, NO2, in the stratosphere (SCIAMACHY-IUP NO2 profiles V1). In order to assess their accuracy, the resulting NO2 profiles have been compared with those retrieved from the space borne occultation instruments Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.2). As the HALOE and SAGE II measurements are performed during local sunrise or sunset and because NO2 has a significant diurnal variability, the NO2 profiles derived from HALOE and SAGE II have been transformed to those predicted for the solar zenith angles of the SCIAMACHY measurement by using a 1-dimensional photochemical model. The model used to facilitate the comparison of the NO2 profiles from the different satellite sensors is described and a sensitivity ananlysis provided. Comparisons between NO2 profiles from SCIAMACHY and those from HALOE NO2 but transformed to the SCIAMACHY solar zenith angle, for collocations from July to October 2002, show good agreement (within +/-12%) between the altitude range from 22 to 33km. The results from the comparison of all collocated NO2 profiles from SCIAMACHY and those from SAGE II transformed to the SCIAMACHY solar zenith angle show a systematic negative bias of 10 to 35% between 20km to 38km with a small standard deviation between 5 to 14%. These results agree with those of Newchurch and Ayoub (2004), implying that above 20km NO2 profiles from SAGE II sunset are probably somewhat high.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint