Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 4, issue 1
Atmos. Chem. Phys., 4, 169–182, 2004
https://doi.org/10.5194/acp-4-169-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Mediterranean intensive oxidant study (MINOS 2001)

Atmos. Chem. Phys., 4, 169–182, 2004
https://doi.org/10.5194/acp-4-169-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  03 Feb 2004

03 Feb 2004

Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign

M. Vrekoussis1, M. Kanakidou1, N. Mihalopoulos1, P. J. Crutzen2, J. Lelieveld2, D. Perner2, H. Berresheim3, and E. Baboukas2 M. Vrekoussis et al.
  • 1Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, P.O. Box 1470, 71409 Heraklion, Greece
  • 2Max-Planck-Institute for Chemistry, Air Chemistry Department, P.O. Box 3060, 55020 Mainz, Germany
  • 3German Weather Service, Meteorological Observatory, Hohenpeissenberg, Albin-Schwaiger-Weg 10, Germany

Abstract. During the MINOS campaign (28 July-18 August 2001) the nitrate (NO3) radical was measured at Finokalia station, on the north coast of Crete in South-East Europe using a long path (10.4 km) Differential Optical Absorption Spectroscopy instrument (DOAS). Hydroxyl (OH) radical was also measured by a Chemical Ionization Mass-Spectrometer (Berresheim et al., 2003). These datasets represent the first simultaneous measurements of OH and NO3 radicals in the area. NO3 radical concentrations ranged from less than 3x107 up to 9x108 radicals· cm-3 with an average nighttime value of 1.1x108 radicals· cm-3.

The observed NO3 mixing ratios are analyzed on the basis of the corresponding meteorological data and the volatile organic compound (VOC) observations which were measured simultaneously at Finokalia station. The importance of the NO3 radical chemistry relatively to that of OH in the dimethylsulfide (DMS) and nitrate cycles is also investigated. The observed NO3 levels regulate the nighttime variation of DMS. The loss of DMS by NO3 during night is about 75% of that by OH radical during day. NO3 and nitrogen pentoxide (N2O5) reactions account for about 21% of the total nitrate (HNO3(g)+NO-3(g)) production.

Publications Copernicus
Download
Citation
Final-revised paper
Preprint