Articles | Volume 17, issue 22
https://doi.org/10.5194/acp-17-13869-2017
https://doi.org/10.5194/acp-17-13869-2017
Research article
 | 
22 Nov 2017
Research article |  | 22 Nov 2017

Reanalysis of and attribution to near-surface ozone concentrations in Sweden during 1990–2013

Camilla Andersson, Heléne Alpfjord, Lennart Robertson, Per Erik Karlsson, and Magnuz Engardt

Abstract. We have constructed two data sets of hourly resolution reanalyzed near-surface ozone (O3) concentrations for the period 1990–2013 for Sweden. Long-term simulations from a chemistry-transport model (CTM) covering Europe were combined with hourly ozone concentration observations at Swedish and Norwegian background measurement sites using retrospective variational data analysis. The reanalysis data sets show improved performance over the original CTM when compared to independent observations.

In one of the reanalyses, we included all available hourly near-surface O3 observations, whilst in the other we carefully selected time-consistent observations. Based on the second reanalysis we investigated statistical aspects of the distribution of the near-surface O3 concentrations, focusing on the linear trend over the 24-year period. We show that high near-surface O3 concentrations are decreasing and low O3 concentrations are increasing, which is reflected in observed improvement of many health and vegetation indices (apart from those with a low threshold).

Using the CTM we also conducted sensitivity simulations to quantify the causes of the observed change, focusing on three factors: change in hemispheric background concentrations, meteorology and anthropogenic emissions. The rising low concentrations of near-surface O3 in Sweden are caused by a combination of all three factors, whilst the decrease in the highest O3 concentrations is caused by European O3 precursor emissions reductions.

While studying the impact of anthropogenic emissions changes, we identified systematic differences in the modeled trend compared to observations that must be caused by incorrect trends in the utilized emissions inventory or by too high sensitivity of our model to emissions changes.

Download
Short summary
We show that high near-surface O3 concentrations in Sweden are decreasing and low O3 concentrations are increasing during 1990–2013. The cause for the change is a combination of change in hemispheric background, meteorology and anthropogenic emissions. We have identified systematic differences in the modelled trend that must be caused by incorrect trends in the utilized emissions or by too high sensitivity in the model. We based the analysis on fused measurements and modelling.
Altmetrics
Final-revised paper
Preprint