Articles | Volume 15, issue 14
https://doi.org/10.5194/acp-15-7777-2015
https://doi.org/10.5194/acp-15-7777-2015
Research article
 | 
16 Jul 2015
Research article |  | 16 Jul 2015

Seasonal and diurnal trends in concentrations and fluxes of volatile organic compounds in central London

A. C. Valach, B. Langford, E. Nemitz, A. R. MacKenzie, and C. N. Hewitt

Abstract. Concentrations and fluxes of seven volatile organic compounds (VOCs) were measured between August and December 2012 at a rooftop site in central London as part of the ClearfLo project (Clean Air for London). VOC concentrations were quantified using a proton transfer reaction mass spectrometer (PTR-MS) and fluxes were calculated using a virtual disjunct eddy covariance technique. The median VOC fluxes, including aromatics, oxygenated compounds and isoprene, ranged from 0.07 to 0.33 mg m−2 h−1. Median mixing ratios were 7.3 ppb for methanol and < 1 ppb for the other compounds. Strong relationships were observed between the fluxes and concentrations of some VOCs with traffic density and between the fluxes and concentrations of isoprene and oxygenated compounds with photosynthetically active radiation (PAR) and temperature. An estimated 50–90 % of the fluxes of aromatic VOCs were attributable to traffic activity, which showed little seasonal variation, suggesting that boundary layer effects or possibly advected pollution may be the primary causes of increased concentrations of aromatics in winter. Isoprene, methanol and acetaldehyde fluxes and concentrations in August and September showed high correlations with PAR and temperature, when fluxes and concentrations were largest suggesting that biogenic sources contributed to their fluxes. Modelled biogenic isoprene fluxes from urban vegetation using the Guenther et al. (1995) algorithm agreed well with measured fluxes in August and September. Comparisons of estimated annual benzene emissions from both the London and the National Atmospheric Emissions Inventories agreed well with measured benzene fluxes. Flux footprint analysis indicated emission sources were localised and that boundary layer dynamics and source strengths were responsible for temporal and spatial VOC flux and concentration variability during the measurement period.

Please read the corrigendum first before accessing the article.

Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Concentrations and fluxes of selected volatile organic compounds were measured over a 5-month period in central London as part of the ClearfLo project using a proton transfer reaction mass spectrometer. Emission sources within the city were inferred from spatio-temporal patterns and showed a detectable biogenic source during warmer months, which was modelled using the Guenther 95 algorithm. Comparisons were made with the local emissions inventories showing mostly underestimated emissions.
Altmetrics
Final-revised paper
Preprint