Articles | Volume 15, issue 23
Atmos. Chem. Phys., 15, 13269–13297, 2015
Atmos. Chem. Phys., 15, 13269–13297, 2015

Research article 01 Dec 2015

Research article | 01 Dec 2015

The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

I. B. Konovalov1, M. Beekmann2, E. V. Berezin1, H. Petetin2, T. Mielonen3, I. N. Kuznetsova4, and M. O. Andreae5 I. B. Konovalov et al.
  • 1Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, Russia
  • 2Laboratoire Inter-Universitaire de Systèmes Atmosphériques, CNRS, Université Paris-Est and Université Paris 7, Créteil, France
  • 3Finnish Meteorological Institute, Kuopio, Finland
  • 4Hydrometeorological Centre of Russia, Moscow, Russia
  • 5Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany

Abstract. Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS) framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2), employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas-particle partitioning and oxidation of SVOCs into account is found to result in a major improvement of the agreement of simulations and satellite measurements of aerosol optical depth, as well as in considerable changes in predicted aerosol composition and top-down BB aerosol emission estimates derived from AOD measurements.

Short summary
(1) The mesoscale evolution of aerosol from open biomass burning (BB) has been successfully simulated using the volatility basis set (VBS) framework. (2) The simulations disregarding semivolatile nature of organic compounds forming BB aerosol are found to be inconsistent with measurements in the region and period affected by the Russian 2010 wildfires. (3) The VBS method enables one to improve the consistency of "top-down" and "bottom-up" estimates of BB aerosol emissions.
Final-revised paper