Articles | Volume 14, issue 16
Atmos. Chem. Phys., 14, 8343–8367, 2014
Atmos. Chem. Phys., 14, 8343–8367, 2014

Research article 20 Aug 2014

Research article | 20 Aug 2014

Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors

B. P. Guillod1, B. Orlowsky1, D. Miralles2,3, A. J. Teuling4, P. D. Blanken5, N. Buchmann6, P. Ciais7, M. Ek8, K. L. Findell9, P. Gentine10, B. R. Lintner11, R. L. Scott12, B. Van den Hurk13, and S. I. Seneviratne1 B. P. Guillod et al.
  • 1ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland
  • 2Ghent University, Laboratory of Hydrology and Water Management, Ghent, Belgium
  • 3University of Bristol, School of Geographical Sciences, Bristol, UK
  • 4Wageningen University, Hydrology and Quantitative Water Management Group, Wageningen, the Netherlands
  • 5University of Colorado, Department of Geography, Boulder, CO, USA
  • 6ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
  • 7Laboratoire des Sciences du Climat et de l'Environnement, LSCE, Gif-sur-Yvette, France
  • 8National Centers for Environmental Prediction, Suitland, MD, USA
  • 9Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
  • 10Columbia University, Department of Earth and Environmental Engineering, New York, NY, USA
  • 11Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA
  • 12Southwest Watershed Research Center, USDA-ARS, Tucson, AZ, USA
  • 13Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands

Abstract. The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the evaporative fraction (EF), i.e., the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by relating the before-noon EF to the frequency of afternoon precipitation over the contiguous US, through statistical analyses of multiple EF and precipitation data sets. We analyze remote-sensing data products (Global Land Evaporation: the Amsterdam Methodology (GLEAM) for EF, and radar precipitation from the NEXt generation weather RADar system (NEXRAD)), FLUXNET station data, and the North American Regional Reanalysis (NARR). Data sets agree on a region of positive relationship between EF and precipitation occurrence in the southwestern US. However, a region of strong positive relationship over the eastern US in NARR cannot be confirmed with observation-derived estimates (GLEAM, NEXRAD and FLUXNET). The GLEAM–NEXRAD data set combination indicates a region of positive EF–precipitation relationship in the central US. These disagreements emphasize large uncertainties in the EF data. Further analyses highlight that much of these EF–precipitation relationships could be explained by precipitation persistence alone, and it is unclear whether EF has an additional role in triggering afternoon precipitation. This also highlights the difficulties in isolating a land impact on precipitation. Regional analyses point to contrasting mechanisms over different regions. Over the eastern US, our analyses suggest that the EF–precipitation relationship in NARR is either atmospherically controlled (from precipitation persistence and potential evaporation) or driven by vegetation interception rather than soil moisture. Although this aligns well with the high forest cover and the wet regime of that region, the role of interception evaporation is likely overestimated because of low nighttime evaporation in NARR. Over the central and southwestern US, the EF–precipitation relationship is additionally linked to soil moisture variations, owing to the soil-moisture-limited climate regime.

Final-revised paper