Articles | Volume 14, issue 18
https://doi.org/10.5194/acp-14-10119-2014
https://doi.org/10.5194/acp-14-10119-2014
Research article
 | 
23 Sep 2014
Research article |  | 23 Sep 2014

Summertime tropospheric ozone assessment over the Mediterranean region using the thermal infrared IASI/MetOp sounder and the WRF-Chem model

S. Safieddine, A. Boynard, P.-F. Coheur, D. Hurtmans, G. Pfister, B. Quennehen, J. L. Thomas, J.-C. Raut, K. S. Law, Z. Klimont, J. Hadji-Lazaro, M. George, and C. Clerbaux

Abstract. Over the Mediterranean region, elevated tropospheric ozone (O3) values are recorded, especially in summer. We use the thermal Infrared Atmospheric Sounding Interferometer (IASI) and the Weather Research and Forecasting Model with Chemistry (WRF-Chem) to understand and interpret the factors and emission sources responsible for the high O3 concentrations observed in the Mediterranean troposphere. Six years (2008–2013) of IASI data have been analyzed and results show consistent maxima during summer, with an increase of up to 22% in the [0–8] km O3 column in the eastern part of the basin compared to the middle of the basin. We focus on summer 2010 to investigate the processes that contribute to these summer maxima. Using two modeled O3 tracers (inflow to the model domain and local anthropogenic emissions), we show that, between the surface and 2 km, O3 is mostly formed from anthropogenic emissions, while above 4 km it is mostly transported from outside the domain or from stratospheric origins. Evidence of stratosphere-to-troposphere exchange (STE) events in the eastern part of the basin is shown, and corresponds to a low water vapor mixing ratio and high potential vorticity.

Download
Altmetrics
Final-revised paper
Preprint