Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 12, issue 20
Atmos. Chem. Phys., 12, 9941–9964, 2012
https://doi.org/10.5194/acp-12-9941-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 9941–9964, 2012
https://doi.org/10.5194/acp-12-9941-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Oct 2012

Research article | 30 Oct 2012

Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?

Z. J. Lebo1,*, H. Morrison2, and J. H. Seinfeld1,3 Z. J. Lebo et al.
  • 1Environmental Science and Engineering, California Institute of Technology, Pasadena, 91125, CA, USA
  • 2Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, 80307, CO, USA
  • 3Chemical Engineering, California Institute of Technology, Pasadena, 91125, CA, USA
  • *now at: Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, 80307, CO, USA

Abstract. Three configurations of a bulk microphysics scheme in conjunction with a detailed bin scheme are implemented in the Weather Research and Forecasting (WRF) model to specifically address the role of the saturation adjustment assumption (i.e., condensing/evaporating the surplus/deficit water vapor relative to saturation in one time step) on aerosol-induced invigoration of deep convective clouds. The bulk model configurations are designed to treat cloud droplet condensation/evaporation using either saturation adjustment, as employed in most bulk models, or an explicit representation of supersaturation over a time step, as used in bin models. Results demonstrate that the use of saturation adjustment artificially enhances condensation and latent heating at low levels and limits the potential for an increase in aerosol concentration to increase buoyancy at mid to upper levels. This leads to a small weakening of the time- and domain-averaged convective mass flux (~-3%) in polluted compared to clean conditions. In contrast, the bin model and bulk scheme with explicit prediction of supersaturation simulate an increase in latent heating aloft and the convective updraft mass flux is weakly invigorated (~5%). The bin model also produces a large increase in domain-mean cumulative surface precipitation in polluted conditions (~18%), while all of the bulk model configurations simulate little change in precipitation. Finally, it is shown that the cold pool weakens substantially with increased aerosol loading when saturation adjustment is applied, which acts to reduce the low-level convergence and weaken the convective dynamics. With an explicit treatment of supersaturation in the bulk and bin models there is little change in cold pool strength, so that the convective response to polluted conditions is influenced more by changes in latent heating aloft. It is concluded that the use of saturation adjustment can explain differences in the response of cold pool evolution and convective dynamics with aerosol loading simulated by the bulk and bin models, but cannot explain large differences in the response of surface precipitation between these models.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint