Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 12, issue 18
Atmos. Chem. Phys., 12, 8813–8828, 2012
https://doi.org/10.5194/acp-12-8813-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 8813–8828, 2012
https://doi.org/10.5194/acp-12-8813-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Sep 2012

Research article | 28 Sep 2012

On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

C. von Savigny1, I. C. McDade2, K.-U. Eichmann3, and J. P. Burrows3 C. von Savigny et al.
  • 1Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
  • 2Centre for Research in Earth and Space Science (CRESS) and Department of Earth and Space Science and Engineering (ESSE), York University, Toronto, Ontario, Canada
  • 3Institute of Environmental Physics, University of Bremen, Bremen, Germany

Abstract. Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1), OH(6-2) and OH(8-3) Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1) and the OH(8-3) band.

The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint