Articles | Volume 12, issue 9
Atmos. Chem. Phys., 12, 4181–4206, 2012

Special issue: Atmospheric mercury processes: papers from the 10th ICMGP

Atmos. Chem. Phys., 12, 4181–4206, 2012

Research article 11 May 2012

Research article | 11 May 2012

Speciated mercury at marine, coastal, and inland sites in New England – Part 2: Relationships with atmospheric physical parameters

H. Mao1, R. Talbot2, J. Hegarty3, and J. Koermer4 H. Mao et al.
  • 1Department of Chemistry, State University of New York, College of Environmental Science and Technology, Syracuse, NY 13219, USA
  • 2Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
  • 3AER, Inc., 131 Hartwell Avenue, Lexington, MA, 02421, USA
  • 4Department of Atmospheric Science & Chemistry, Plymouth State University, Plymouth, New Hampshire 03264, USA

Abstract. Long-term continuous measurements of gaseous elemental mercury (Hg0), reactive gaseous mercury (RGM), and particulate phase mercury (HgP) were conducted at coastal (Thompson Farm, denoted as TF), marine (Appledore Island, denoted as AI), and elevated inland rural (Pac Monadnock, denoted as PM) monitoring sites of the AIRMAP Observing Network. Diurnal, seasonal, annual, and interannual variability in Hg0, RGM, and HgP from the three distinctly different environments were characterized and compared in Part 1. Here in Part 2 relationships between speciated mercury (i.e., Hg0, RGM, and HgP) and climate variables (e.g., temperature, wind speed, humidity, solar radiation, and precipitation) were examined. The best point-to-point correlations were found between Hg0 and temperature in summer at TF and spring at PM, but there was no similar correlation at AI. Subsets of data demonstrated regional impacts of episodic dynamic processes such as strong cyclonic systems on ambient levels of Hg0 at all three sites, possibly through enhanced oceanic evasion of Hg0. A tendency of higher levels of RGM and HgP was identified in spring and summer under sunny conditions in all environments. Specifically, the 10th, 25th, median, 75th, and 90th percentile mixing ratios of RGM and HgP increased with stronger solar radiation at both the coastal and marine sites. These metrics decreased with increasing wind speed at AI indicating enhanced loss of RGM and HgP through deposition. RGM and HgP levels correlated with temperature positively in spring, summer and fall at the coastal and marine locations. At the coastal site relationships between RGM and relative humidity suggested a clear decreasing tendency in all metrics from <40% to 100% relative humidity in all seasons especially in spring, compared to less variability in the marine environment. The effect of precipitation on RGM at coastal and marine locations was similar. At the coastal site, RGM levels were a factor of 3–4 to two orders of magnitude higher under dry conditions than rainy conditions in all seasons. In winter RGM mixing ratios appeared to be mostly above the limit of detection (LOD) during snowfalls suggesting less scavenging efficiency of snow. Mixing ratios of HgP at the coastal and marine sites remained above the LOD under rainy conditions. Precipitation had negligible impact on the magnitude and pattern of diurnal variation of HgP in all seasons in the marine environment.

Please read the corrigendum first before accessing the article.

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Final-revised paper