Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 12, issue 21
Atmos. Chem. Phys., 12, 10465–10484, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Light depolarization by atmospheric particles: theory and...

Atmos. Chem. Phys., 12, 10465–10484, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Nov 2012

Research article | 09 Nov 2012

Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics

M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner M. Schnaiter et al.
  • Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, P.O. Box 3640, 76021 Karlsruhe, Germany

Abstract. The article presents the laser scattering and depolarisation instrument SIMONE that is installed at the large aerosol and cloud chamber facility AIDA of the Karlsruhe Institute of Technology. SIMONE uses a 488 nm cw laser to probe simulated atmospheric clouds by measuring the scattered light from the 1.8° and 178.2° directions. At 178.2°, the scattered light is analysed for the linear polarisation state to deduce the particle linear depolarisation ratio δp which is a common measurement parameter of atmospheric lidar applications. The optical setup and the mathematical formalism of the depolarisation detection concept are given. SIMONE depolarisation measurements in spheroidal hematite aerosol and supercooled liquid clouds are used to validate the instrument.

SIMONE data from a series of AIDA ice nucleation experiments at temperatures between 195 and 225 K were analysed in terms of the impact of the ice particle microphysics on δp. We found strong depolarisation values of up to 0.4 in case of small growing and sublimating ice particles with volume equivalent diameters of only a few micrometers.

Modelling runs with the T-matrix method showed that the measured depolarisation ratios can be accurately reproduced assuming spheroidal and cylindrical particles with a size distribution that has been constrained by IR extinction spectroscopy. Based on the T-matrix modelling runs, we demonstrate that in case of small ice crystals the SIMONE depolarisation results are representative for the lidar depolarisation ratio which is measured at exact backscattering direction of 180°.

The relevance of our results for the interpretation of recent lidar observations in cirrus and contrails is discussed. In view of our results, the high depolarisation ratios observed by the spaceborne lidar CALIOP in the tropical upper troposphere might be a hint for the presence of small (sublimating) ice particles in the outflows of deep convective systems.

Publications Copernicus
Final-revised paper