Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 12, issue 21
Atmos. Chem. Phys., 12, 10257–10269, 2012
https://doi.org/10.5194/acp-12-10257-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 10257–10269, 2012
https://doi.org/10.5194/acp-12-10257-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Nov 2012

Research article | 06 Nov 2012

Chamber simulation of photooxidation of dimethyl sulfide and isoprene in the presence of NOx

T. Chen and M. Jang T. Chen and M. Jang
  • Department of Environmental Engineering Sciences, P.O. Box 116450, University of Florida, Gainesville, FL, 32611, USA

Abstract. To improve the model prediction for the formation of H2SO4 and methanesulfonic acid (MSA), aerosol-phase reactions of gaseous dimethyl sulfide (DMS) oxidation products [e.g., dimethyl sulfoxide (DMSO)] in aerosol have been included in the DMS kinetic model with the recently reported gas-phase reactions and their rate constants. To determine the rate constants of aerosol-phase reactions of both DMSO and its major gaseous products [e.g., dimethyl sulfone (DMSO2) and methanesulfinic acid (MSIA)], DMSO was photooxidized in the presence of NOx using a 2 m3 Teflon film chamber. The rate constants tested in the DMSO kinetic mechanisms were then incorporated into the DMS photooxidation mechanism. The model simulation using the newly constructed DMS oxidation mechanims was compared to chamber data obtained from the phototoxiation of DMS in the presence of NOx. Within 120-min simulation, the predicted concentrations of MSA increase by 200–400% and those of H2SO4, by 50–200% due to aerosol-phase chemistry. This was well substantiated with experimental data. To study the effect of coexisting volatile organic compounds, the photooxidation of DMS in the presence of isoprene and NOx has been simulated using the newly constructed DMS kinetic model integrated with the Master Chemical Mechanism (MCM) for isoprene oxidation, and compared to chamber data. With the high concentrations of DMS (250 ppb) and isoprene (560–2248 ppb), both the model simulation and experimental data showed an increase in the yields of MSA and H2SO4 as the isoprene concentration increased.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint