Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 11, issue 15
Atmos. Chem. Phys., 11, 7859–7873, 2011
https://doi.org/10.5194/acp-11-7859-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 11, 7859–7873, 2011
https://doi.org/10.5194/acp-11-7859-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Aug 2011

Research article | 04 Aug 2011

Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

B. N. Murphy1, N. M. Donahue1, C. Fountoukis2, and S. N. Pandis1,3 B. N. Murphy et al.
  • 1Department of Chemical Engineering, Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213, USA
  • 2Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation of Research and Technology (FORTH), Patra, Greece
  • 3Department of Chemical Engineering, University of Patras, Patra, Greece

Abstract. A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m−3, predicted mean = 3.3 μg m−3) and O:C (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider possibly important processes like fragmentation that may offset mass gains and affect the prediction bias. On the other hand, many of the cases chosen for this study predict average O:C estimates that are consistent with the observations, illustrating the need for more thorough experimental characterizations of OA parameters including the enthalpy of vaporization and oxidation state of the first generation of SOA products. The ability of the model to predict OA concentrations is less sensitive to perturbations in the model parameters than its ability to predict O:C. In this sense, quantifying O:C with a predictive model and constraining it with AMS measurements can reduce uncertainty in our understanding of OA formation and aging.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint