Research article
07 Dec 2011
Research article | 07 Dec 2011
ACE-FTS measurements of trace species in the characterization of biomass burning plumes
K. A. Tereszchuk1, G. González Abad1,4, C. Clerbaux2,3, D. Hurtmans3, P.-F. Coheur3, and P. F. Bernath1,5
K. A. Tereszchuk et al.
K. A. Tereszchuk1, G. González Abad1,4, C. Clerbaux2,3, D. Hurtmans3, P.-F. Coheur3, and P. F. Bernath1,5
- 1Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- 2UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
- 3Spectroscopie de l'Atmosphère, Service de Chimie Quantique et de Photophysique, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
- 4Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138, USA
- 5Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA 23529-0126, USA
- 1Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- 2UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
- 3Spectroscopie de l'Atmosphère, Service de Chimie Quantique et de Photophysique, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
- 4Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138, USA
- 5Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA 23529-0126, USA
Hide author details
Received: 15 Mar 2011 – Discussion started: 10 Jun 2011 – Revised: 15 Nov 2011 – Accepted: 25 Nov 2011 – Published: 07 Dec 2011
To further our understanding of the effects of biomass burning emissions on atmospheric composition, we report measurements of trace species in biomass burning plumes made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the SCISAT-1 satellite. An extensive set of 15 molecules, C2H2, C2H6, CH3OH, CH4, CO, H2CO, HCN, HCOOH, HNO3, NO, NO2, N2O5, O3, OCS and SF6 are used in our analysis. Even though most biomass burning smoke is typically confined to the boundary layer, some of these emissions are injected directly into the free troposphere via fire-related convective processes and transported away from the emission source. Further knowledge of the aging of biomass burning emissions in the free troposphere is needed. Tracer-tracer correlations are made between known pyrogenic species in these plumes in an effort to characterize them and follow their chemical evolution. Criteria such as age and type of biomass material burned are considered.