Articles | Volume 10, issue 6
18 Mar 2010
 | 18 Mar 2010

Dust storms come to Central and Southwestern China, too: implications from a major dust event in Chongqing

Q. Zhao, K. He, K. A. Rahn, Y. Ma, Y. Jia, F. Yang, F. Duan, Y. Lei, G, Chen, Y. Cheng, H, Liu, and S. Wang

Abstract. Dust storms from major Asian sources are usually carried by northwesterly or westerly winds over Northern and Southeastern China to the Pacific Ocean. These pathways leave Central and Southwestern China nearly free of incursions. But a strong dust event on 5–6 May 2005 was captured in a 15-month series of weekly filter samples of PM2.5 at three sites in Chongqing. It illustrated that desert dust can be transported to this region, and sometimes strongly. Annual PM2.5 and dust were similar at the three sites, but higher than in simultaneous samples in Beijing. High correlations of dust concentrations were found between the cities during spring, indicating that Asian dust affects a broader swath of China than is often realized. During the event, the concentrations of mineral dust were high at all sites (20–30 μg m−3; 15%–20% of PM2.5 in Chongqing, and 15 μg m−3; 20%–30% of PM2.5 in Beijing), and were part of a broader spring maximum. The proportions of crustal elements and pollution-derived components such as Pb, SO42−, and organic carbon indicated that the sources for this dust differed from Beijing. The dust was considerably enriched in Ca and Mg, characteristic of western deserts, whereas Beijing's dust had the lower Ca and Mg of eastern deserts. This observation agrees with synoptic patterns and back-trajectories. Driven by a cold air outbreak from the northwest, dust from the western Gobi Desert was transported at lower altitudes (<2 km above ground level), while dust from the Takla Makan Desert was transported to Chongqing at higher altitudes. Desert dust can also be important to wide areas of China during the cold season, since almost all the weekly dust peaks in the two cities coincided with extensive dust emissions in source regions. These findings collectively suggest that the amount Asian-dust in China has been underestimated both spatially and temporally, and that transported alkaline dust can even be mitigating the effects of acidic deposition in Southern China.

Final-revised paper