08 Mar 2022
08 Mar 2022
Status: this preprint is currently under review for the journal ACP.

Simulating Wildfire Emissions and Plumerise using Geostationary Satellite Fire Radiative Power Measurements: A Case Study of the 2019 Williams Flats fire

Aditya Kumar1, R. Bradley Pierce1, Ravan Ahmadov2,3, Gabriel Pereira4, Saulo Freitas5, Georg Grell3, Chris Schmidt1, Allen Lenzen1, Joshua P. Schwarz6, Anne E. Perring7, Joseph M. Katich7,a, John Hair8, Jose L. Jimenez2,9, Pedro Campuzano-Jost2,9, and Hongyu Guo2,9 Aditya Kumar et al.
  • 1Space Science and Engineering Center, University of Wisconsin Madison, Madison, WI
  • 2Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO
  • 3NOAA Global Systems Laboratory, Boulder, CO
  • 4Federal University of São João del-Rei, MG, Brazil
  • 5Center for Weather Forecast and Climatic Studies (CPTEC), Brazil
  • 6National Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, CO
  • 7Department of Chemistry, Colgate University, Hamilton, NY
  • 8National Aeronautics and Space Administration (NASA) Langley Research Center, Hampton, VA
  • 9Department of Chemistry, University of Colorado Boulder, Boulder, CO
  • anow at: Ball Aerospace, Boulder, CO

Abstract. We use the Weather Research and Forecasting with Chemistry (WRF-Chem) model with new implementations of GOES-16 fire radiative power (FRP) based wildfire emissions and plume-rise to interpret aerosol observations during the 2019 NASA-NOAA FIREX-AQ field campaign and perform model evaluations. We compare simulated aerosol concentrations and optical properties against observations of black carbon aerosol from the NOAA Single Particle Soot Photometer (NOAA-SP2), organic aerosol from the CU High Resolution Aerosol Mass Spectrometer (HR-AMS) and aerosol backscatter coefficients from the High Spectral Resolution Lidar (HSRL) system. This study focuses on the Williams Flats fire in Washington, which was repeatedly sampled during four science flights by the NASA DC-8 (August 3 – August 8, 2019). The emissions and plume-rise methodologies are implemented following NOAA’s operational High Resolution Rapid Refresh coupled with Smoke (HRRR-Smoke) forecasting model. In addition, new GOES-16 FRP based diurnal cycle functions are developed and incorporated in WRF-Chem. The FIREX-AQ observations represented a diverse set of sampled environments ranging from fresh/aged smoke from the Williams Flats fire to remnants of plumes transported over long distances. The Williams Flats fire resulted in significant aerosol enhancements during August 3–8, 2019, which were substantially underestimated by the standard version of WRF-Chem. The simulated BC and OC concentrations increased between 92 – 125 times (BC) and 28–78 times (OC) with the new implementation compared to the standard WRF-Chem version. These increases resulted in better agreement with the FIREX-AQ airborne observations for BC and OC concentrations (particularly for fresh smoke sampling phases) and aerosol backscatter coefficients. The model still showed a low bias in simulating the aerosol loadings observed in aged plumes from Williams Flats. WRF-Chem with the FRP-based plumerise simulated similar plume heights to the standard plumerise model in WRF-Chem. The simulated plume heights (for both versions) compared well with estimated plume heights using the HSRL measurements. Therefore, the improvements in the model simulation were mainly driven by the higher emissions in the FRP-based version. The model evaluations also highlighted the importance of accurately accounting for the wildfire diurnal cycle and including adequate representation of the underlying chemical mechanisms, both of which could significantly impact model forecasting performance.

Aditya Kumar et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2022-33', Anonymous Referee #1, 26 Mar 2022
  • RC2: 'Comment on acp-2022-33', Anonymous Referee #3, 10 May 2022

Aditya Kumar et al.


Total article views: 444 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
302 130 12 444 5 8
  • HTML: 302
  • PDF: 130
  • XML: 12
  • Total: 444
  • BibTeX: 5
  • EndNote: 8
Views and downloads (calculated since 08 Mar 2022)
Cumulative views and downloads (calculated since 08 Mar 2022)

Viewed (geographical distribution)

Total article views: 538 (including HTML, PDF, and XML) Thereof 538 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 22 Jun 2022
Short summary
We use the WRF-Chem model with new implementations of GOES-16 fire radiative power (FRP) based wildfire emissions and plume-rise to interpret aerosol observations during the 2019 NASA-NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.