- Preprint
(4180 KB) - Metadata XML
- Articles & preprints
- Submission
- Policies
- Peer review
- Editorial board
- About
- EGU publications
- Manuscript tracking
World Avoided. We show that extensive denitrification in 2020 provides an important test case for stratospheric model process representations. If the Montreal Protocol had not banned ozone depleting substances, we show that an Arctic Ozone hole emerges for the first time in Spring 2020 that is comparable to those in the Antarctic.
08 Jan 2021
08 Jan 2021
Abstract. Without the Montreal Protocol the already extreme Arctic ozone losses in boreal spring of 2020 would be expected to have produced an Antarctic-like ozone hole, with an area of total ozone below 220 DU of about 20 million km2. Record observed local lows of 0.1 ppmv at some altitudes in the lower stratosphere would have reached 0.01, again similar to the Antarctic. This provides an opportunity to test parameterizations of polar stratospheric cloud impacts on denitrification, and thereby to improve stratospheric models. Spring ozone depletion would have begun earlier and lasted longer without the Montreal Protocol, and by 2020 the year-round ozone depletion would have begun to dramatically diverge from the observed case. This study reinforces that the historically extreme 2020 Arctic ozone depletion is not cause for concern over the Montreal Protocol's effectiveness, but rather demonstrates that the Montreal Protocol indeed merits celebration for avoiding an Arctic ozone hole.
Catherine Wilka et al.
Status: open (until 05 Mar 2021)
Catherine Wilka et al.
Catherine Wilka et al.
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
238 | 85 | 4 | 327 | 13 | 3 | 3 |
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
World Avoided. We show that extensive denitrification in 2020 provides an important test case for stratospheric model process representations. If the Montreal Protocol had not banned ozone depleting substances, we show that an Arctic Ozone hole emerges for the first time in Spring 2020 that is comparable to those in the Antarctic.
An interactive open-access journal of the European Geosciences Union