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Abstract.

We explore the sensitivity of modelled tropospheric hydroxyl (OH) concentration trends to meteorology and near-term cli-

mate forcers (NTCFs), namely methane (CH4); nitrogen oxides (NOx = NO2 + NO); carbon monoxide (CO); non-methane

volatile organic compounds (NMVOCs); and ozone-depleting substances (ODS) using the Geophysical Fluid Dynamics Labo-

ratory (GFDL)’s atmospheric chemistry-climate model, Atmospheric Model version 4.1 (AM4.1) driven by emissions invento-5

ries developed for the Sixth Coupled Model Intercomparison Project (CMIP6) and forced by observed sea surface temperatures

and sea ice prepared in support of the CMIP6 Atmospheric Model Intercomparison Project (AMIP) simulations. We find that

the modelled tropospheric airmass-weighted mean [OH] has increased by ∼ 5% globally from 1980 to 2014. We find that NOx

emissions and CH4 concentrations dominate the modelled global trend, while CO emissions and meteorology were also impor-

tant in driving regional trends. Modelled tropospheric NO2 column trends are largely consistent with those retrieved from the10

Ozone Monitoring Instrument (OMI) satellite, but simulated CO column trends generally overestimate those retrieved from the

Measurements of Pollution in The Troposphere (MOPITT) satellite, possibly reflecting biases in input anthropogenic emission

inventories, especially over China and South Asia.

1 Introduction

The hydroxyl radical (OH), as the primary daytime oxidant in the troposphere (Levy, 1971), plays an important role in atmo-15

spheric chemistry. OH influences air quality and climate, as reaction with OH is a major sink of various trace species including

tropospheric ozone precursors such as methane (CH4), carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), ozone-

depleting substances (ODS) such as halocarbons, and non-methane volatile organic compounds (NMVOCs) (e.g. Holmes et al.

(2013); Turner et al. (2019)). Precise knowledge of the OH budget, its variations and trends, and its response to various drivers,

is needed to determine source and sink budgets for these important trace species, and is therefore crucial to our understanding20

of the various aforementioned effects on the Earth system (e.g. Lawrence et al., 2001; Naik et al., 2013; Murray et al., 2014;

Zhao et al., 2019; Nicely et al., 2020; Patra et al., 2021). In particular, there are still gaps in our understanding of the drivers of

the observed atmospheric methane concentration growth rate in recent years (Saunois et al., 2020; Nisbet et al., 2021), further

highlighting the importance of better understanding [OH] trends and variability. Recent observational based studies suggest
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Table 1. Important reactions describing tropospheric OH chemistry.

Reaction number Reaction

R1 O3 +hν→O(1D)+O2,λ < 310nm
::::::::::::::::::::::::::::
O3 +hν→O(1D)+O2,λ < 330nm

R2 O(1D)+H2O→ 2OH

R3 HO2 +NO→NO2 +OH

R4 O3 +HO2→ 2O2 +OH

R5 H2O2 +hν→ 2OH,λ < 550nm

R6 CO+OH(+O2)→HO2 +CO2

R7 RH+OH(+O2)→ RO2 +H2O(+O2)

R8 RO2 +NO(+M)→ R′CHO+NO2 +OH(+M)

R9 NO2 +hν→O(3P)+NO,λ < 430nm

R10 O(3P)+O2(+M)→O3(+M)

R11 NO2 +OH(+M)→HNO3(+M)

R12 HO2 +HO2→H2O2 +O2

R13 RO2 +HO2→ ROOH+O2

either a decline or stable OH concentrations over the past four decades (e.g. Rigby et al., 2017; Turner et al., 2017; Zhao et al.,25

2019) while global chemistry-climate models simulate increases over the same period (e.g Stevenson et al., 2020; Zhao et al.,

2020). In this study, we employ the state-of-the-science GFDL chemistry-climate model (CCM), AM4.1, to systematically

explore the drivers of changes in [OH] between 1980 and 2014 to shed light on its role in driving recent methane increases.

Changes in [OH] can be traced back to changes in the budget terms. The time tendency of [OH] is determined by the

balance between chemical production (P) and loss (L) terms, since the chemical processes for OH tend to occur at much faster30

timescales compared to other potential terms in the budget equation such as advection and transport (Lelieveld et al., 2016).

The governing time tendency equation therefore is given by

d[OH]

dt
= P −L (1)

Table 1 summarises the tropospheric OH chemistry that is described here. Primary production of tropopsheric
::::::::::
tropospheric

OH occurs via the photodissociation of troposheric ozone (O3) by ultraviolet (UV) radiation of wavelength less than 310 nm35

(R1) to produce excited singlet oxygen atoms (O(1D)) (Brasseur and Solomon, 2005), which then react with water vapor (R2).

OH can also be generated by secondary production mechanisms that recycle OH from hydroperoxy radicals (HO2) (reactions

R3-R5). In high-NOx regions, such as polluted urban environments, HO2 can be recycled back to OH via reaction with NO

without consuming O3 (R3) and is the dominant production term. This NOx-driven secondary prodution of OH, otherwise

known as the NOx recycling mechanism of OH, is similar in magnitude to the primary formation of OH on a global basis,40

being about ∼ 30% each (Lelieveld et al., 2016). In unpolluted regions, other secondary production mechanisms, collectively

called the Ox recycling mechanism, are dominant. One involves the consumption of ozone in unpolluted regions (R4) (as
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opposed to the production of ozone in polluted conditions), and the other involves the photolysis of H2O2 (R5). Oxidation

of CO is the largest OH loss reaction (R6) with important losses via oxidation of methane and non-methane volatile organic

compounds (NMVOCs) (R7). Organic peroxy radicals can also undergo an OH-recycling reaction with NO to form NO2 (R8).45

The fate of the resultant organic carbon product, R′CHO, can be to either further generate OH or HO2 radicals if it undergoes

photolysis, or to undergo further oxidation by OH. The NO2 produced via Reactions R3 and R8 can then be photolysed to form

ozone (R9-R10), which then leads to further primary production of OH via Reactions R1 and R2 (Hameed et al., 1979). In a

strongly polluted atmosphere, NO2 can locally become a large HOx (HOx = OH + HO2) sink, causing net OH loss through the

formation of nitric acid (HNO3) (R11) which can be washed out via wet deposition (Crutzen and Lawrence, 2000). Meanwhile,50

in clean, non-polluted conditions, the reaction chains involving the HO2 and RO2 radicals can be terminated via loss reactions

R12 and R13. The self-reaction of HO2 (R12) represents an OH sink, as the hydrogen peroxide (H2O2) product can be washed

out via wet deposition and is the dominant HOx sink since most of the troposphere experiences low NOx conditions (Jaeglé

et al., 2001).

Overall, the atmospheric composition directly impacts the OH budget, most notably via tropospheric ozone, humidity, NOx,55

CO, methane and NMVOCs, with the former three usually acting to increase [OH], and the latter three acting to decrease [OH],

but there are also meteorological factors which influence the budget via influencing the tropospheric chemistry of OH as well.

Temperature plays an important role in controlling rate reaction rates, tropospheric water vapour abundance and also natural

emissions of biogenic VOCs (Spivakovsky et al., 2000). Also, as many important reactions are photolysis reactions, such as

the primary production of OH via R1 which requires UV radiation of wavelengths (λ < 330nm), the overhead ozone column,60

which controls the amount of UV radiation penetrating into the troposphere, aerosol direct and indirect effects, and cloud cover

play an important role as well (Levy, 1971). These point to the possible anthropogenic impacts on the OH budget which can

impact these various factors directly or indirectly.

Because OH is highly reactive and therefore has a short lifetime of ∼ 1s, this makes it difficult to achieve global observational

coverage over time of directly-observed [OH]. As a result, various observational proxies have been used to indirectly estimate65

the spatial distribution, global mean as well as the temporal variations and trends of [OH]. A widely-used proxy is methyl

chloroform (CH3CCl3, MCF) (e.g. Montzka et al., 2011; Rigby et al., 2017; Turner et al., 2017; Naus et al., 2019; Patra et al.,

2021), for which there is a relatively long temporal observational record, for example the ∼ 4 decades’ worth of data from the

Advanced Global Atmospheric Gases Experiment (AGAGE) and National Oceanic and Atmospheric Administration (NOAA)

networks. Using a multi-box model inversion method, Rigby et al. (2017) and Turner et al. (2017) found an increasing global70

mean [OH] trend from the 1990s up to the mid-2000s but found a decreasing [OH] trend thereafter; however, in these studies,

it was highlighted that the inferred [OH] trends were only weakly constrained, and when Naus et al. (2019) corrected for biases

in the multi-box model inversion method, they found an overall increasing trend over the last 2 decades. To avoid some of these

biases such as those arising from the spatial averaging required in box model methods, 3D chemistry transport models (CTMs)

have also been used to infer [OH] from MCF observations such as in Patra et al. (2021) and Naus et al. (2021) who found75

no significant trend in [OH]. Non-MCF methods have also been used to explore [OH] trends since 1980: for example, Nicely

et al. (2018) used observational constraints of various [OH] drivers to empirically reconstruct [OH], and found no significant
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trend as well. Overall, global mean [OH] derived from most atmospheric inversions or empirical reconstructions seems to not

have a significant trend over the 1980-2014 period. Models such as CTMs, CCMs and earth system models (ESMs) can also be

used to calculate [OH], and these models have shown an increase in global mean [OH] since 1980 to present-day, in contrast80

to the [OH] trends derived from observational constraints (Naik et al., 2013; Zhao et al., 2019; Nicely et al., 2020; Stevenson

et al., 2020; Zhao et al., 2020). Most of these studies found that changes to Near-term Climate Forcers (NTCFs) played a key

role in driving the modelled [OH] increase. In particular, Stevenson et al. (2020) found an ∼ 10% increase with respect to

the 1998-2007 mean from 1980 to 2014 from 3 Earth System Models (ESMs) participating in the Aerosols and Chemistry

Model Intercomparison Project (AerChemMIP) as part of the Sixth Coupled Model Intercomparison Project (CMIP6). They85

attribute this simulated increasing
:::::::
increase to changes in anthropogenic NTCFs, mainly increases in anthropogenic nitrogen

oxides combined with declining CO emissions since 1990 with smaller contributions from changes in halocarbon and aerosol-

related emissions. Naik et al. (2013) and Nicely et al. (2020) also additionally highlight the role of stratospheric ozone loss due

to factors such as emissions of ozone-depleting substances (ODS) and increasing specific humidity in driving the increasing

[OH] trend.90

As discussed above, there are a plethora of emissions-related, chemical and physical drivers that affect [OH], and many

of these are also driven by climate variability (Alexander and Mickley, 2015). As such, [OH] tends to exhibit interannual

variability (IAV), and various modelling studies have explored the drivers of [OH] IAV. For example, large-scale climate

variability through the El Niño Southern Oscillation (ENSO) has been shown to play an important role in driving [OH] IAV,

through ENSO effects on variability in: temperature and humidity (Zhao et al., 2020); biomass burning emissions such as CO95

(an OH sink) and NOx (tends to enhance OH) (Holmes et al., 2013; Zhao et al., 2020); O3 and j(O1D) in the lower troposphere

(Anderson et al., 2021); and lightning NOx emissions (Turner et al., 2018). In particular, the role of lightning NOx in driving

[OH] IAV in the GFDL AM4.1 over the period 1980-2016 was also highlighted by He et al. (2021), and Murray et al. (2013)

who found that lightning NOx emissions were the key factor driving IAV especially over the period 1998-2006 through its role

in affecting both seconday OH production via the NOx recycling mechanism as well as primary production via its role as a100

tropospheric ozone precursor. However, the drivers of OH variability also show large model diversity. For example, lightning

NOx can be parameterised differently in different models (Zhao et al., 2020; Wild et al., 2020), and so its response to climate

variability like ENSO can vary from model to model.

In summary, in the period 1980-2014, global CCMs seem to have converged on an overall increasing [OH] trend driven

by complementary changes in emissions and meteorology (Szopa et al., 2021). Here we build on previous studies to explore105

the contribution of individual component drivers to attribute trends and variability in [OH]. We apply the the GFDL-AM4.1

CCM to systematically explore the roles of meteorology and individual chemical drivers in changing [OH], with the goal of

identifying the primary drivers of increasing [OH] trends over 1980-2014 simulated by global models. Additionally, we analyse

the model simulations to shed light on the primary drivers of [OH] IAV.
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2 Methods110

2.1 GFDL AM4.1 Model Setup

We use the GFDL Atmospheric Model 4.1 (AM4.1), which is the atmosphere-only configuration of the GFDL Earth System

Model ESM4.1. Further details of the AM4.1 setup are described by Horowitz et al. (2020), and a summary of the features

relevant to [OH] are provided here. The AM4.1 has a spatial resolution of ∼ 100km on a cubed-sphere grid, and resolves 49

vertical levels up to ∼ 80km. It uses an updated chemical mechanism (Horowitz et al., 2020) with gas-phase and heterogeneous115

chemistry updates following Mao et al. (2013a, b). The key feature of this model configuration is that it has online oxidants,

i.e. it includes chemical and climate feedbacks on oxidant concentrations. Photolysis rate constants are calculated interactively

via the photolysis mechanism Fast-JX version 7.1 (Wild et al., 2000; Bian and Prather, 2002). All model simulations are forced

with interannually varying sea surface temperatures and sea ice from Taylor et al. (2000), prepared in support of the CMIP6

Atmospheric Model Intercomparison Project (AMIP) simulations
:
as

::::
part

::
of

::::::
phase

:
6
:::
of

:::
the

:::::::
Coupled

::::::
Model

::::::::::::::
Intercomparison120

::::::
Project

:::::::
(CMIP6).

We used historical emissions datasets for ozone and aerosol precursors developed in support of phase 6 of the Coupled Model

Intercomparison Project (CMIP6): the Community Emissions Database (CEDS) for anthropogenic emissions (v2017-05-18;

Hoesly et al. (2018)) and
::::::::
historical

:::::::
biomass

:::::::
burning

::::::::
emissions

:::
for

:::::::
CMIP6

:
(BB4CMIP

:
)
:
for biomass burning emissions (van

Marle et al., 2017). In addition, natural sources of NMVOCs, NOx and CO were taken from Precursors of Ozone and their Ef-125

fects in the Troposphere inventory (POET, Granier et al. (2005)) following Naik et al. (2013), except for isoprene and monoter-

pene emissions which are calculated online as described in Horowitz et al. (2020) and Rasmussen et al. (2012). Lightning
::
As

::::::::
described

::
in

::::::::::::::::::
Horowitz et al. (2020)

:
,
:::::::
lightning

:
NOx Horowitz et al. (2020) emissions are calculated interactively as a function

of subgrid-scale convection(Horowitz et al. (2020)).
::::::
subgrid

::::::::::
convection,

::
as

::::::::
diagnosed

:::
by

:::
the

::::::
double

:::::
plume

:::::::::
convection

:::::::
scheme

::::::::
described

::
by

:::::::::::::::
Zhao et al. (2018).

::::
The

::::::::
lightning

::::
NOx::::::

source
:
is
:::::::::
calculated

::
as

:
a
:::::::
function

:::
of

:::::::::
convective

::::::::
cloud-top

::::::
height,

::::::::
following130

::
the

::::::::::::::
parameterization

:::
of

:::::::::::::::
Price et al. (1997),

:::
and

::
is
:::::::
injected

::::
with

:::
the

:::::::
vertical

::::::::::
distribution

::
of

::::::::::::::::::
Pickering et al. (1998)

:
. Well-mixed

greenhouse gas concentrations are specified following Meinshausen et al. (2017). In particular, atmospheric concentrations of

ODS, including CFC-11, CFC-12, CFC-113, and HCFC-22, and CH4 concentrations are specified at the surface as a
:::::
global

::::
mean

:
lower boundary condition, with concentrations beyond the surface subsequently determined by various chemical and

dynamical processes. A summary of historical CO emissions, CH4 concentrations and NOx emissions are
:
is
:
shown in Fig. 1.135

2.2 Model Runs

We conducted model integrations from 1980-2014, using an initialisation state from an GFDL AM4.1 historical run. In addition

to a ’Base’ run which includes the time-varying historical emissions of the various species as per Horowitz et al. (2020), we

conducted ’all-but-one’ runs where we investigate the effects of various emitted species which could affect OH concentrations,

namely: NOx; CH4; CO; NMVOC; and ozone-depleting substances (’ODS’). These runs are configured so as to systematically140

fix the emissions of a particular species to 1980 values in order to isolate the effects of each individual species by comparing

with the ’Base’ run. Additionally, we include a run where all the above species are set to 1980 values (’Met’), which allows
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(a) (b) (c)

Figure 1. Historical time series of (a) regional CO emissions, (b) CH4 surface concentrations, and (c) regional NOx emissions used for this

study. The Southern Hemisphere (SH) extratropics is defined as 90oS− 30oS, the Tropics as 30oS− 30oN, and the Northern Hemisphere

(NH) extratropics as 30oN− 90oN. Globally, CH4 concentrations have inceased by ∼ 16%. Non-lightning NOx emissions have also in-

creased by∼ 30% globally over this period, with this increase driven by the Tropics. CO emissions see IAV but little trend globally over this

period, but do see a decreasing trend in the NH extratropics offset by an increasing trend in the Tropics.

us to diagnose the effects of meteorology. Note that, as lightning NOx emissions as well as biogenic terpene and isoprene

emissions are interactively-calculated, their impacts are included in the ’Met’ run. The ’NOx’ run only fixes non-lightning

NOx emissions at 1980 levels, and the ’NMVOC’ run only fixes the emissions of other NMVOCs than biogenic terpene and145

isoprene.

While the ’Base’ and ’Met’ run will be analyzed on their own, for the sensitivity runs involving each emission driver,

i=NOx, CH4, CO, VOC, ODS, for each quantity analysed, e.g. tropospheric airmass-weighted OH concentrations, we

calculate a derived quantity as per Eq. 2. Quantityi will be the quantity if the emission driver i was set to 1980 values, but

everything else (other drivers and meteorology) was as per the ’Base’ run, so taking the difference (QuantityBase−Quantityi)150

allows us to isolate the impact of driver i, with respect to the 1980 value from the ’Base’ run (QuantityBase,1980) and removes

the impact of meteorology and other drivers. Adding the anomaly to the 1980 value from the ’Base’ run then allows us to

diagnose the impact that the emission driver i would have on the quantity in isolation.

Quantityi,derived = (QuantityBase −Quantityi)+QuantityBase,1980 (2)

In the original run, Quantityi shows a negative deviation from QuantityBase, and also shows some variability as a result of155

other factors like meteorology, the derived quantity, Quantityi,derived, would show a positive deviation from QuantityBase

instead, in addition to having the variability from other factors like meteorology removed.

2.3 Chemical Budget Term Analysis

To complement our analysis of the main potential drivers of [OH] from 1980 to 2014, we provide a bottom-up, mechanistic

understanding of how the various drivers affect [OH], by looking at the chemical budget. As described in Eq. 1, changes in160

[OH] can be traced to changes in the OH chemical production and loss terms. We follow the methodology of Lelieveld et al.
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(2016) to analyse the chemical budget terms. We group the production terms into: primary production (Reactions R1-R2);

secondary production, or recycling, via NOx (Reaction R3); secondary production via O3 (Reaction R4); secondary production

via H2O2 photolysis (Reaction R5); and other OH production reactions (e.g. from recyling from peroxy radicals via Reaction

R13 or other photolysis reactions.) Meanwhile, the loss terms are grouped into: loss via CO from Reaction R6; loss via CH4165

from Reaction R7; loss via NMVOC from Reaction R7; loss via NOy , which includes loss via Reaction R11 but also via

other nitrogen-containing species like HNO3, NH3 and nitrogen-containing isoprene oxidation products; loss via HOy , which

includes loss via H2, O, O3, H2O2, HO2 and also self-reaction; and other loss reactions, which include loss to sulphur- and

halogen-containing species.

2.4 Evaluation of Modelled CO and NOx170

We identified CO, non-lightning NOx emissions and CH4 as key drivers of [OH] from 1980 to 2014, of which CH4 concentra-

tions are prescribed in the model.
:
, so it is important to look at how well the modelled CO and NOx compare to observations.

This would allow us to say to what extent our findings from our model study could be generalised to the real world.

2.4.1 Comparison of Modelled CO column with Measurements of Pollution in The Troposphere (MOPITT) Satellite

Observations175

We evaluate the modelled tropospheric CO column trends against those measured by the MOPITT instrument, following

Horowitz et al. (2020). The MOPITT V8 Joint (NIR+TIR) retrievals (Deeter et al., 2019) during 2001-2014 are used, which

are available from the NASA Earthdata archive (https://earthdata.nasa.gov). The modelled CO column is interpolated to the

same grid as the monthly MOPITT observations, and the averaging kernel is applied to the modelled monthly mean CO

profiles following documentation provided by Deeter (2003) in order to compare between modelled and observed MOPITT180

CO columns.

Horowitz et al. (2020) previously calculated the seasonal climatological mean CO column in the GFDL AM4.1 and found a

persistent model CO column low bias in the NH and high bias in the SH compared to MOPITT observations across seasons.

Horowitz et al. (2020) also compared modelled surface CO concentration with measurements from a globally distributed

network of air sampling sites maintained by the Global Monitoring Division (GMD) of the Earth System Research Laboratory185

at the National Oceanic and Atmospheric Administration (NOAA) (Pétron et al., 2019; data available at ftp://aftp.cmdl.noaa.

gov/data/trace_gases/co/flask/) and the NH low bias/SH high bias was also seen in remote site comparisons. In this study,

we complement the analysis by comparing the annual mean CO column trends.
:::
We

::::
also

::::
look

:::
at

:::
the

::::::
global

:::::::::::
(60oS-60oN)

:::::::::::
area-weighted

:::::::::
12-month

:::::
rolling

:::::
mean

::::
CO

:::::::
columns

::
to

:::::::
compare

::::
IAV.

:
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2.4.2 Comparison of Modelled Tropospheric NO2 column with Ozone Monitoring Instrument (OMI) Satellite190

Observations

We also identified NOx trends as driving the modelled increase in [OH], so it would be useful to find out if the NOx trends

modelled matched well with observations. Compared to CO which has a lifetime of about a month, NOx has a relatively shorter

tropospheric lifetime of ∼ day (Jacob, 2000), and so NOx burden is much more concentrated near emission areas. Therefore,

an evaluation of tropospheric NOx observations will more readily give information about emissions and how they change with195

time. We analyse the NO2 column trends from 2005 to 2014 to coincide with when OMI observations started, noting that the

shorter time period may limit the trend analysis.

The OMI, which is onboard the Aura satellite, is a polar-orbiting, nadir-viewing, UV-visible spectrometer with a swath width

of 2600km and a nadir pixel size of 13× 24km2. It observes backscattered solar radiation in the range of 270-500 nm with

an average spectral resolution of 0.5 nm. It has a continuous data record since 1st Oct 2004, with global daily coverage for200

the first 3 years of operation, but since 25th June 2007, anomalous radiances have been observed in several of the pixel rows.

These have been classified as the ’row anomaly’ (). Filtering for this row-anomaly problem could sometimes result in up to

50% field-of-view rejection rate, causing OMI to complete global coverage in 2 days instead of 1. More information about

OMI v3 NO2 product which will be used in this study can be found in Krotkov et al. (2017).

Although gridded data products are publicly available, they
::
We

::::
use

:::
the

::::
OMI

:::
v4

::::
data

::::::::::::::::::
(Lamsal et al., 2021)

:::
that

:::
has

:::::
been205

::::::::
processed

::::
into

:
a
:::::::
gridded

::::::
dataset

:::
by

::::::::::::::::::
Goldberg et al. (2021).

::::
The

:::::::
gridded

::::
data do not come with information necessary to cal-

culate the averaging kernel, which, as discussed earlier, is necessary for a better comparison between retrievals and modelled

quantities. In particular, for UV-visible measurements such as OMI, the tropospheric retrievals of NO2 can be heavily influ-

enced by aspects such as clouds, surface albedo, the presence of a stratospheric background and aerosols, as well
::
as the assumed

a priori vertical profile (Eskes and Boersma, 2003), resulting in potentially large errors. The Differential Optical Absorption210

Spectroscopy (DOAS) technique used is sensitive to the a priori vertical profile, and using the averaging kernels allows for the

model-to-satellite comparisons to not be affected by systematic biases introduced by the a priori assumptions. This work will

not use averaging kernels, and thus the comparisons between the model and OMI observations are only an approximation. We

furthermore also note that the tropopause level used for processing the model data, which we determined using the WMO def-

inition, is also different from that used in the OMI data. These factors add to the qualitative nature of the comparisons between215

the model and OMI observations done in this study. However, despite these approximations, the purpose of this analysis is to

show consistency between input NOx emission trends, modelled NOx trends, and observed trends.

3 Results

3.1 Tropospheric [OH] Trends from 1980 to 2014

As seen in Fig. 2(a), tropospheric airmass-weighted [OH] has increased by ∼ 5% from 1980 to 2014 in the Base simulation.220

The 1980-2014 period fits a linear trend of 0.033± 0.06 molec cm−3yr−1 (95% Confidence Interval (CI)) as seen from Fig.
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2(d) and exhibits some IAV throughout the period. The simulated increase is well within the range found in Zhao et al. (2019)

and on the upper bound of the range found in Naik et al. (2013). In terms of the anomaly with respect to 1998-2007 mean

modelled ∼ 10% agrees well with that simulated in ESMs participating in CMIP6 using the same emission drivers (Stevenson

et al., 2020). In detail, we see that the 1980-2010 period is dominated by an increasing trend. From 2010 to 2014, we see a225

slight decrease; however, as shown by He et al. (2020), looking further into 2015-2017, [OH] increases again, suggesting that

the overall increasing trend is robust. The increase, especially in the period 2000-2010, is in contrast to some observational

studies like Rigby et al. (2017) and Turner et al. (2017) who found a decrease instead. The increase over the 35-year period

1980 to 2014 is also in contrast to the period from 1870 to 1980, where [OH] did not exhibit a trend (Stevenson et al., 2020;

Szopa et al., 2021). As seen in Fig. 2(b), the increase in [OH] occurs throughout the depth of the troposphere, but with the230

largest increase seen from the surface to the lower troposphere. This could suggest that the increasing [OH] trend is driven by

mainly surface drivers rather than, for example, lightning NOx emissions.

Next, we look at the sensitivty
::::::::
sensitivity

:
of simulated [OH] to various chemical drivers of [OH]. The simulated global tropo-

spheric airmass-weighted [OH] are plotted in Fig. 2(c), with the individual model runs analysed as per Section 2.2. As seen in

Fig. 2(d), the increasing non-lightning NOx emissions caused the largest positive [OH] trend of 0.041±0.004 molec cm−3yr−1235

(95% CI), while there is a small positive trend arising from decreasing ODS concentrations of 0.005±0.0015 molec cm−3yr−1

(95% CI). This suggests that the increasing non-lightning NOx emissions of ∼ 30% ( Fig. 1(c)) have been the largest driving

force behind the overall [OH] increase. However, the ’NOx’ run overestimates the positive trend , and fails to capture some of

the modelled features in the ’Base’ run, such as the dip in 1992 suggesting the important contributions of other factors which

dampen the effect of increasing non-lightning NOx as we discuss below.240

In terms of factors that contribute negatively to the [OH] trend, increasing CH4 concentrations caused the largest negative

trend of −0.012±0.02 molec cm−3yr−1 (95% CI), and there is also a small negative trend simulated in the ’NMVOC’ run of

−0.003±0.02 molec cm−3yr−1 (95% CI). The ’CH4’ run simulates a roughly 4% decrease from 1980 to 2014 as seen in Fig.

2(c), consistent with the increasing CH4 concentrations seen over the period. We see that [OH] decreases from 1980 to 2000

before stabilizing up to 2007 after which it resumes its decrease. This follows the CH4 trend, plotted in Fig. 1(b), seen over245

this period, where CH4 has increased from 1980 to 2000 before stabilizing up to 2007 after which it resumed its increase, such

that the CH4 burden has increased by about 16% by 2014 compared to 1980 values. Over the 1980-2014 period, CO emissions

do not contribute to the global average OH trend but induce large IAV (see section 3.3) as evident in the CO simulation. This

lack of OH trend is attributed to the lack of trend in CO emissions over the this 35 year period as seen in 1(a).

With NOx and CH4 identified as the main factors affecting the global [OH] trend, we conducted an additional sensi-250

tivity run accounting for their combined effects (’CH4 + NOx’). As seen in Fig. 2(d), the resultant OH trend of 0.032±
0.05 molec cm−3yr−1 (95% CI) matches the ’Base’ run well, suggesting that the combined effects of CH4 and NOx drive the

overall modelled [OH] trend.

Other factors, such as meteorology, that have been known to drive [OH] do not show up strongly on the global tropospheric

mean analysis. This result is consistent with He et al. (2021), who used AM4.1 driven by the same emissions as this study but255

varied the meteorology field (model-calculated, NCEP and MERRA
:::
the

:::::::
National

::::::
Centers

:::
for

::::::::::::
Environmental

:::::::::
Prediction

:::::::
(NCEP)

9



(a) (b)

(c) (d)

Figure 2. Tropospheric airmass-weighted [OH] (a) time series for the ’Base’ run as well as the anomaly with respect to the 1998-2007

mean from 1980 to 2014; (b) 10-year
:::::
global area-weighted

:::::::::::::
airmass-weighted

:
mean [OH] at various altitudes for 1980-1989

:::::
(black

::::
solid

:::
line)

:
and 2005-2014 periods

:::::
(black

:::::
dotted

::::
line),

:::
and

::
the

:::::::::
percentage [

::
OH]

:::::::
difference

::
at
::::
each

::::::
altitude

::::
(blue

:::
line); (c) Tropospheric

:::::::::
tropospheric

:::::::::::::
airmass-weighted [OH] time series and (d) trends from the Base simulation and from the sensitivity simulations with all (’Met’) and

individual short-lived emissions held constant at 1980 levels. For (b), error bars
::
for

:::
the

::::::::
1980-1989

::::
and

::::::::
2005-2014

:::::
means

:
represent ±1

standard deviation about the
::::::
10-year mean at each pressure level. For (d), trends are calculated using the Theil-Sen method, and error bars

show the 95% confidence interval. Bars are hashed when no significant trend is detected at the 95% level using the Mann-Kendall test. From

(a), tropospheric airmass-weighted [OH] has increased by ∼ 5% from 1980 to 2014 in the Base simulation. As seen in (b), the increase in

[OH] occurs throughout the depth of the troposphere, but with the largest increase seen from the surface to the lower troposphere, and this

could suggest that the increasing [OH] trend is driven by mainly surface drivers. From (c) and (d), we see that globally the [OH] increasing

trend is driven by the combined effects of CH4 and NOx.

::::::::
reanalysis

::::
and

::::::::::
Modern-Era

:::::::::::
Retrospective

:::::::
analysis

:::
for

::::::::
Research

::::
and

:::::::::::
Applications,

:::::::
Version

::
2

::::::::::
(MERRA-2)

:
meteorology), and

found that meteorology could affect the magnitudes of mean [OH], but not the trend. Nonetheless, these other factors could

have important regional contributions, which we explore in the next section.

10



3.2 Regional Tropospheric [OH] Trends from 1980 to 2014260

Next, we analyze the spatial patterns of the [OH] trends in order to get a more nuanced view of how [OH] is changing. In

the ’Base’ run, the tropospheric airmass-weighted column mean [OH] increases over most areas, with the largest increases

over much of Tropical Asia as well as China (Fig. 3). On the other hand, there are also areas such as over USA, some parts

of Western Europe and Northern Russia, where there is a small decreasing trend, as well as Central Africa which sees a

pronounced decreasing trend.265

We next see that the [OH] changes in the ’NOx’ run are positively correlated with the changes in non-lightning NOx

emissions (Fig. 4(a)), and itself matches the ’Base’ run changes very well. This reinforces the earlier result that non-lightning

NOx emissions have been the main driver behind the modelled [OH] trend. However, non-lightning NOx emissions alone seem

to overpredict the decreasing trends over Western Europe and Northern Russia and increasing trends in the other regions. The

addition of the CH4 trend does not change the spatial pattern much, since [CH4] increases uniformly across the surface, but270

it helps to bring the positive trends in line with ’Base’. However, this then leads to a larger overprediction of the decreasing

trends over Western Europe and Northern Russia.

This, in turn, is largely rectified by including the effects of CO emissions. We see that the ’CO’ run produces changes in

[OH] that are negatively correlated with the changes in CO emissions (Fig 4(b)), in particular an increasing trend in [OH] over

USA, Europe and Russia associated with declining CO emissions. The addition of these effects therefore helps to dampen the275

effects of declining NOx emissions and increasing CH4 concentrations in those regions. The dampening effect of CO on NOx

effects in these particular regions is due to the large spatial correlation between the NOx and CO emission trends as seen in

Fig. 4(a) and (b).

The large negative trend over Central Africa results not only from contributions from increasing CH4 concentrations and

increasing NMVOC emissions (Fig. 4(c)), which tend to reduce [OH] by increasing chemical loss, but also from meteorology-280

related factors.

In terms of meteorology-related factors, trends in lightning NOx have been suggested to contribute to [OH] trends (e.g. He

et al., 2020; Fiore et al., 2006). From Fig. 4(d), Our meteorology-driven simulation did not show significant lightning NOx

trends except for a significant negative trend over Central Africa, which could further help explain the locally negative [OH]

trend. Looking at other factors that could affect [OH], we see from Fig. 4(e) that isoprene emissions, which are interactively285

calculated in our model, have increased in specific regions in the meteorology-driven run, such as over the Amazon, Eastern

USA, Central Africa, and parts of Asia such as Eastern China. Indeed, we see that these regions are associated with negative

[OH] trends in the meteorology-driven run, with Central Africa seeing a particularly large effect. We also see, from Fig. 4(f)

that, in the meteorology-driven run, the water vapor burden has increased sigificantly in most regions, which tends to locally

increase OH chemical production. These competing local effects on [OH] from meteorology-driven factors accounts for the290

absence of a globally-averaged [OH] trend contribution from meteorology.

Overall, this analysis reinforces the findings from the global average analysis of the key role of non-lightning NOx emissions

in driving the overall [OH] trends, modulated by the changes in CH4 concentrations. However, the regional trends highlight the
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additional importance of CO emissions, especially in regions in the extratropical NH, as well as the importance of increasing

NMVOC emissions and meteorology-driven decreases in lightning NOx as well as increases in isoprene emissions in explaining295

the negative [OH] trend over Central Africa. Our findings from the spatial column tropospheric analysis also hold when we

looked at particular pressure levels in the surface as well as the middle and upper troposphere (Fig. ??
::
see

::::
Fig.

:::
S1

:::
of

:::
the

::::::::::::
Supplementary

:::::::
Material).

3.3 Interannual Variability

In the above analyses, we found that, in general, CH4 and NOx effects can largely explain the long-term [OH] trend over300

1980-2014. However, the combined effects of CH4 and NOx alone do not account for the short-term variability in [OH] seen

over this period. In particular, there are some features such as the dip in 1992 as well as the dips and spikes seen between 1995

to 2000 that the ’CH4+NOx’ run misses. As seen in Fig. 5, in the global average there is a year-on-year change of up to about

0.4 molec cm−3yr−1, with 13 out
::
of the 34 years after 1980, or about one-third of the years, showing a negative year-on-year

change.305

We see from Fig. 2(c) that the ’Base’ and meteorology-driven runs are positively correlated, with a Pearson correlation

coefficient of r = 0.82. As summarized in Section 1, meteorology can affect [OH] in various ways. We further see also that the

’CO’ run (pink line) also exhibits variability features that are also seen in the ’Base’ run, notably the dip in 1992, and also the

dips and spikes seen between 1995 to 2000.
:
. This could be related to variability in biomass burning, as pointed out by Holmes

et al. (2013).310

3.4 OH production and loss terms

3.4.1 Chemical Budget Terms in Base Run

We first look at how the proportions of each of the production and loss terms evolves with time from 1980 to 2014 in the ’Base’

run, as shown in Fig. 6(a) and (b). Firstly, we see that the relative proportions stay roughly constant throughout the time period,

suggesting that all of the reaction terms have increased in tandem with the total. In terms of the biggest changes, we see that,315

for OH production terms, the primary production term has increased in proportion by the largest amount (+0.5%), followed by

small increases in the NOx and O3 recycling reactions (0.1% each) at the expense of the other two terms. Meanwhile for the

OH loss terms, the CO loss reaction sees quite large variability, especially from 1990 to 2000, and decreases by 1.1% overall.

The CH4 loss reaction increases by 0.9% overall. Comparing the production values with Table 1 of Lelieveld et al. (2016),

the percentages are roughly consistent. However, our model seems to have a larger proportion of primary production (42%)320

compared to Lelieveld et al. (2016) (33%). Looking at the loss reactions, we have a lower proportion of NMVOC loss (20%

compared to 29%), and also a higher loss to HOy (25% compared to 18%).

We next look at the chemical budget terms in the ’Base’ model run. From Fig. 6(c), we see that global tropospheric airmass-

weighted OH production and loss match closely with one another, consistent with the pseudo steady-state assumption. Both

have increased by about 14% by 2014 compared to 1980, showing a clear trend. We also see some IAV throughout the period,325
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Figure 3. Trends in tropospheric airmass-weighted OH concentrations by grid box from 1980 to 2014 for the different model runs. Trends

are calculated using the Theil-Sen method. Stipples show areas where a significant trend is detected at the 95% level using the Mann-Kendall

test. In the ’Base’ run, the tropospheric airmass-weighted column mean [OH] increases over most areas, with the largest increases over much

of Tropical Asia as well as China. These increases are also largely driven by the combined effects of non-lightning NOx emissions and CH4

concentrations. On the other hand, there are also areas such as over USA, some parts of Western Europe and Northern Russia, where there is

a small decreasing trend, as well as Central Africa which sees a pronounced decreasing trend.
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(a) (b)

(c) (d)

(e) (f )

Figure 4. Spatial trends of (a) non-lightning NOx, (b) CO, (c) NMVOC, (d) lightning NOx (e) biogenic isoprene emissions, and (f) humidity

from 1980-2014. Trends and stippling are as per Fig. 3, except for (a) and (b) and (d), where we additionally remove stippling when the trend

is below 10−16Tg/yr−2m−2. [OH] changes in the ’NOx’ run are positively correlated with the changes in non-lightning NOx emissions

(seen in (a)) and itself matches the ’Base’ run changes very well. Meanwhile, the ’CO’ run produces changes in [OH] that are negatively

correlated with the changes in CO emissions (seen in (b)). The large negative trend over Central Africa results not only from contributions

from increasing CH4 concentrations and increasing NMVOC emissions (seen in (c)), which tend to reduce [OH] by increasing chemical loss,

but also from meteorology-related factors, such as lightning NOx as seen in (d), isoprene emissions as seen in (e). From (f), we see the water

vapor burden has increased sigificantly in most regions, which tends to locally increase OH chemical production. These competing local

effects on [OH] from meteorology-driven factors accounts for the absence of a globally-averaged [OH] trend contribution from meteorology.

with year-on-year changes of up to 2%. Relating these results to the earlier findings, where we saw an increasing [OH] trend,

the increasing trend in both production and loss (as they balance each other in steady-state) should therefore be driven by an

increasing trend in production, and that in turn should be associated with the net NOx and CH4 effects. Meanwhile, the IAV

observed in the OH concentrations should also be associated with the IAV seen in the production and loss, and this in turn

should be affected by meteorological factors, factors that are driven by meteorology like lightning NOx and biogenic VOC330
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Figure 5. Base OH Concentrations plotted on the lefthand axis (black), and Year-on-Year changes plotted on the righthand axis (blue). In the

global average there is a year-on-year change of up to about 0.4 molec cm−3yr−1, with 13 out the 34 years after 1980, or about one-third of

the years, showing a negative year-on-year change. The global IAV is driven by IAV in meteorology-related factors and CO emissions.

emissions, and CO emissions. We delve into these hypotheses further in the following subsections when we do a sensitivity

analysis for the budget terms.

Lastly, Fig. 6(d) shows the spatial plot of OH production trends from 1980 to 2014 for the ’Base’ run. We see that it matches

the spatial [OH] trend plot for the ’Base’ run in Fig. 3, suggesting again the role of chemical production (and loss) in driving

[OH] trends.335

3.4.2 Chemical Budget Term Sensitivity Analysis

We next look at how these budget terms are affected by the input emissions by doing a sensitivity analysis using our model

runs, by analyzing the sensitivity simulations involving each emissions driver as well as the meteorology-driven simulation.

We focus our attention on the major terms represented in the budget. For production terms, we look at the primary production

as well as secondary production via NOx and O3, together accounting for ∼ 84% of total production. For loss terms, we focus340

on loss via CO, HOy and CH4, accounting for ∼ 78% of total loss. Unfortunately, we did not have enough model diagnostics

to study loss to NMVOCs, and this is left as potential future work. From the earlier analyses, the NMVOC-related budget term

is unlikely to play a large role in affecting the global [OH] trend, even though it may have a regional role. Also, while analysing

the changes in these budget terms, we note that, due to the fact that [OH] is in pseudo steady-state, we will always have total

production and loss approximately balancing at all times. This means that a change in production can precede a change in loss,345

or vice versa. To disentangle the effects, we have to rely on our physical understanding of the underlying chemistry, and can

take cues from how [OH] itself is changing.

Since our analysis in section 3.1 showed the dominant role of NOx in driving [OH] increses
:::::::
increases

:
over the 1980-2014

period, we focus here on NOx. From Fig. 7 (c), we see from the red line that increasing NOx emissions have led to an increase
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(a) (b)

(c) (d)

Figure 6. Tropospheric Airmass-weighted OH chemical production and loss terms in the ’Base’ run. (a) Evolution of the proportion of

each production reaction with respect to the total, and (b) Same but for loss reactions instead. (c) Time evolution of global total production

and loss terms (curves overlap because OH is in pseudo steady-state.) (d) Spatial airmass-weighted tropospheric OH chemical production

trend over the 1980-2014 period, with stippling and trends as per Fig. 3. From (a) and (b), we see that the relative proportions stay roughly

constant throughout the time period, suggesting that all of the reaction terms have increased in tandem with the total, and the values are

roughly consistent with Table 1 of Lelieveld et al. (2016). From (c), both global tropospheric airmass-weighted OH production and loss have

increased by about 14% by 2014 compared to 1980, showing a clear trend. We also see some IAV throughout the period, with year-on-year

changes of up to 2%. Relating these results to the earlier findings, where we saw an increasing [OH] trend, the increasing trend in both

production and loss (as they balance each other in steady-state) should therefore be driven by an increasing trend in production, and that

in turn should be associated with the net NOx and CH4 effects. Meanwhile, the IAV observed in the OH concentrations should also be

associated with the IAV seen in the production and loss, and this in turn should be affected by meteorological factors, factors that are driven

by meteorology like lightning NOx and biogenic VOC emissions, and CO emissions. From (d), we see that spatial chemical production

trends matches the spatial [OH] trend plot for the ’Base’ run in Fig. 3, suggesting again the role of chemical production (and loss) in driving

[OH] trends.

in OH reycling from NOx. This is to be expected, as the increasing NOx emissions as seen in Fig. 1(c) drive an increase in the350

tropospheric NOx burden as seen in Fig. ??
:::
(see

::::
Fig.

:::
S2(a)

:
of

:::
the

:::::::::::::
Supplementary

::::::::
Material). This therefore increases the NOx

reaction recycling rate from Reaction R3, acting to increase the partitioning of HOx into OH. NOx emissions have also caused

an increase in the other major production terms. We can understand this via the impact of NOx emissions on tropospheric

O3. As seen in Fig. ??(b), increases in
:::::::
Increases

::
in
:

NOx emissions have driven the increasing trend seen in tropospheric O3

burden
:::
(see

::::
Fig.

:::::
S2(b)

::
of

:::
the

::::::::::::
Supplementary

::::::::
Material), with the increase of ∼ 30% of non-lightning NOx emissions leading to355

a ∼ 10% increase in O3. This suggests that the atmosphere as a whole is NOx-limited with respect to ozone production, with
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ozone production occuring via Reactions R8 - R10. This is consistent with other studies e.g. Lawrence et al. (2003) who found

that the lofting of surface NOx drove significant increases in O3 production over the tropospheric column. The increasing O3

concentrations lead to an increase in primary production via Reactions R1 - R2. The increasing O3 concentrations also lead to

enhanced OH recycling via O3 through Reaction R4, which further partitions HOx into OH. Murray et al. (2013) previously360

found that lightning NOx influenced both primary and secondary production, and we show here that non-lightning surface

NOx emissions also have the same effect in our model. The increased OH production as a result of NOx emissions then leads

to an increase in [OH]. As loss fluxes are proportional to [OH], this in turn then leads to increased OH losses (as seen in Fig. 7

(b), (d) and (f)), eventually keeping OH in pseudo steady-state.

Next, we look at the impacts of CH4, which we found to suppress the increasing [OH] trend. We first see the primary effect of365

increased CH4 in depleting OH in Fig. 7(f). Furthermore, oxidation of CH4 via Reaction R7 eventually leads to the production

of CO as seen in Fig??
:::
(see

::::
Fig.

:::
S2(c)

:
of

::::
the

::::::::::::
Supplementary

::::::::
Material), which then leads to a small increase in OH loss via

CO in Fig.7(b). However, as CH4 is a tropospheric ozone precursor, such as via Reaction R8 - R10, the increase in CH4 also

leads to increased tropospheric O3 as seen in Fig. ??
:::
(see

:::
Fig.

:::
S2(b)

:
of

:::
the

:::::::::::::
Supplementary

::::::::
Material), thereby slightly enhancing

primary production and OH recycling via O3 as well. Hence, this could explain why the overall net negative effect of CH4 on370

[OH], which includes a mixture of enhanced losses and production, is smaller. Furthermore, we see in Fig. 7(f) that the NOx

run also contributes roughly equally to the OH loss flux to
:::
due

::
to

:::::::
chemical

:::::::
reaction

:::::
with CH4, and this further highlights the

importance of changes in OH production associated with NOx.

Lastly we look at the impacts of CO, which we found to have a regional effect on the [OH] trend. As identified earlier in Fig.

3, the main region where CO emissions have affected the [OH] trend is in some regions in the extratropical NH, such as Eastern375

USA and Western Europe, where a decrease in CO emissions led to an increase in [OH], and in South Asia and East China,

where an increase in CO emissions led to a decrease in [OH]. As seen for the ’CO’ run in Fig. 8, regions of decreasing CO

emissions see decreasing OH loss via reaction with CO and hence an increase in [OH], and vice versa. However, comparing

the ’Base’ and ’NOx’ runs, we also see that the base OH loss flux to CO is also driven by the [OH] changes associated with

the NOx run, and this again highlights the importance of changes in OH production associated with NOx.380

Additionally, we find that meteorology plays an important role for IAV in OH primary production, while CO emissions are

more important for IAV in the OH loss flux to CO. The former is evident from Fig. 9 which shows that OH primary production

is strongly correlated with changes in specific humidity (q) (r = 0.90
::::::
Pearson

:::::::::
correlation

:::::::::
coefficient

::::::::
r = 0.90) which itself is

strongly correlated with temperature (r = 0.96). For the latter, as seen in Fig. 10(a), CO emissions are positively correlated with

OH loss to CO in the ’Base’ run (r = 0.69). This thereafter drives overall IAV in total loss and production. As seen in Fig.385

10(b), where we plot the year-on-year changes in [OH] on the lefthand axis (black), as well as the year-on-year changes in total

OH production and loss and that of the OH loss to CO on the righthand axis (blue), we first notice that the OH year-on-year

production/loss change (solid blue) is highly correlated with that of the OH loss to CO (dotted blue) with
:::::::
Pearson

:::::::::
correlation

::::::::
coefficient

:
r = 0.94, suggesting that the OH loss to CO is indeed driving the IAV seen in total production/loss. The year-on-year

change in production/loss, in turn, is anti-correlated with the year-on-year change in OH, with
:::::::
Pearson

:::::::::
correlation

:::::::::
coefficient390

r =−0.36.
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(a) (b)

(c) (d)

(e) (f )

Figure 7. OH chemical production and loss budget terms for the different model runs. (a), (c) and (e) show the production terms, accounting

for ∼ 84% of total OH production. (b), (d) and (f) show the loss terms, and account for ∼ 78% of total OH loss. Globally, increasing NOx

emissions have led to increasing primary and secondary OH production, while increasing CH4 concentrations have led to increased OH loss

via reaction with CH4 that is offset by increased secondary OH production due to the increase in tropospheric O3.

4 Evaluation of Modelled CO and NOx

4.1 CO: Comparison with Satellite Column and In Situ Surface Measurements

Fig. 11(a) shows the MOPITT and modelled CO column trends from 2001 to 2014, and Fig. 11(b) shows the input CO emission

trends over the same time period. The MOPITT CO column generally sees significant negative trends throughout the spatial395

domain, consistent with results from Yin et al. (2015). However, the modelled CO columns show significant trends positive

trends above China and Iand
::::
India

:
with weaker positive trends in parts of Africa and the Middle-East and negative trends over
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Figure 8. Tropospheric airmass-weighted OH loss flux to reaction with CO spatial trends from 1980 to 2014 for the different model runs.

Trends and stippling are as per Fig. 3. Regions of decreasing CO emissions see decreasing OH loss via reaction with CO and hence an

increase in [OH] (as seen in the ’CO’ run in Fig. 3), and vice versa.

most other parts of the world. The mixed modelled CO column trends mirror the CO emission trends, especially the increasing

trend over China and South Asia, and are in poor agreement with trends derived from MOPITT. The MOPITT and modelled

CO column trends thus show a poor agreement. Comparing Fig. 11(a) and (b), we see that the modelled CO column trends400

exhibit a high spatial correlation with the input CO emission trends, and so the mismatch between observed and modelled CO
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(a) (b) (c)

Figure 9. OH primary production and [OH] in the meteorology-driven (’Met’) run. (a) shows the comparison between specific humidity

(lefthand axis, black) and OH primary production (righthand axis, blue) in the meteorology-driven run; (b) shows the [OH] (lefthand axis,

black) compared with OH primary production (righthand axis, blue); and (c) shows the comparison between specific humidity (lefthand axis,

black) and tropospheric airmass-weighted air temperature (righthand axis, blue). Meteorology plays an important role for IAV in OH primary

production, with OH primary production being strongly correlated with changes in specific humidity (q) (r = 0.90) which itself is strongly

correlated with temperature (r = 0.96).

(a) (b)

Figure 10. Plots of (a) OH loss to CO with CO emissions, and (b) the year-on-year changes in [OH] together with the year-on-year changes

in net OH production and that of OH loss to CO. As seen in (a), CO emissions are positively correlated with OH loss to CO in the ’Base’ run

(r = 0.69). This thereafter drives overall IAV in total loss and production. As seen in (b), we see that OH year-on-year production/loss change

(solid blue) is highly correlated with that of the OH loss to CO (dotted blue) with r = 0.94, suggesting that the OH loss to CO is indeed

driving the IAV seen in total production/loss. The year-on-year change in production/loss, in turn, is anti-correlated with the year-on-year

change in OH, with r =−0.36.

column trends could point towards some deficiencies in the input emissions, which drive the high bias in CO column trends

over China and South Asia and in turn leads to the general high bias globally due to transport from these regions especially

via the prevailing Westerlies (Zheng et al., 2018). Zheng et al. (2019) suggest that emissions from the version of CEDS used

in our study are inconsistent for China and South Asia. Whereas the version of CEDS used in this study (and other CMIP6405

runs) suggests rapidly increasing anthropogenic CO emissions from China and South Asia, Zheng et al. (2019) found instead a
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decreasing trend for China and a modestly-increasing one for South Asia. Elguindi et al. (2020) compared regional bottom-up

inventories, global bottom-up inventories which include CEDS, and top-down estimates, and they also found that CEDS (and

other global bottom-up inventories) showed an increasing trend that was larger than seen in regional inventories and top-down

emissions. They further point out that, for these countries which are experiencing rapid changes in their economies, technology410

and environmental policies, the reason for biases in the global bottom-up inventories is that they may lack the latest data about

regional activity and emission factor changes, and so in these cases using regional or top-down inventories might reduce biases.

There are various implications of the model-observations mismatch. Given what we understand about how CO affects mod-

elled [OH] in the GFDL AM4.1 from our earlier analyses, we could suspect that, in places where we underestimate the

decreasing trend, we could be underestimating the [OH] increase due to decreasing CO. Meanwhile, in those areas where we415

model a CO increase when observations suggest a decrease instead, we may be modelling an [OH] decrease due to increasing

CO in those regions, as opposed to an [OH] increase due to decreasing CO. Overall, this means that, globally, we could be

underestimating the [OH] increase over the 2001-2014 period.

:::
We

:::
next

:::::::
evaluate

:::
the

::::
IAV

:::::::
captured

::
in

:::
the

::::::
model

::::::
against

:::
that

::::::::
observed

::::
from

::::::::
MOPITT,

:::
by

:::::::::
comparing

:::
the

:::::::::::
area-weighted

::::::
global

::::::::::
(60oS-60oN)

:::::
mean

:::::::::
12-month

::::::
rolling

::::
mean

::::
CO

:::::::
columns

::::
with

::::::::
MOPITT

:::::::::::
observations

::::
over

:::
the

:::::::::
2001-2014

::::::
period

::
in

::::
Fig.

:::::
11(c)420

:::
and

:::
the

::::::::
detrended

:::::
series

:::
in

:::
Fig.

::::::
11(d).

::::
From

::::
Fig.

:::::
11(c),

:::
we

:::
see

:::::
again

::::
that

:::
the

:::::
model

:::::::::::::
underestimates

:::
the

:::::::::
decreasing

:::::
trend

::::
seen

::
in

::::::::
MOPITT,

::::
with

:::
the

:::::
model

:::::
trend

::
of

:::::::::::::::::::::::::::
−0.021× 1018molec cm−2 yr−1

:::::
being

::::
five

:::::
times

::
as

:::::
small

::
in

:::::::::
magnitude

::
as

:::
the

::::::::
MOPITT

::::
trend

::
of

:::::::::::::::::::::::::::
−0.10× 1018molec cm−2 yr−1,

:::::
which

:::::::::
reinforces

::
the

:::::::
analysis

:::::
from

:::
Fig.

:::::
11(a)

:::
and

:::
(b).

::::::::
However,

:::
we

:::
see

:::
that

:::
the

::::::
model

:::::::
captures

:::
the

::::
IAV

::::
well,

::::
with

:::
the

:::::::
Pearson

:::::::::
coefficient

::::::::
r = 0.62

:::
and

::::::::
r = 0.76

::
for

:::
the

::::
raw

:::
and

:::::::::
detrended

::::
time

:::::
series

:::::::::::
respectively.

:::::
Given

::::
that

:::
the

::::
main

::::::
driver

::
of

::::
our

::::::::
modelled

:::
CO

::::
IAV

::::::
comes

:::::
from

:::
the

:::::::
biomass

:::::::
burning

::::::::
emission

::::::::
inventory

:::::
used,

::::
this

:::::
could425

:::
rule

:::
out

:::
the

:::::::
biomass

:::::::
burning

::::::::
emission

::::::::
inventory

::::
used

::
as

::
a

:::::
cause

::
of

:::
the

::::::::::::::::
model-observations

:::::::::
mismatch.

:::::::::::
Furthermore,

:::::
given

:::
the

::::::::
prominent

::::
role

:::
that

::::
CO

::::
plays

::
in
:::::::
driving

:::
the

::::::::
modelled [

:::
OH]

:::
IAV,

::::
our

::::::
findings

::::
here

::::
also

:::::::
suggest

:::
that

:::
our

::::::
model

::
is

::::::::
capturing

:::
the

[
:::
OH]

:::
IAV

:::
due

::
to
::::
CO

::::
well

::::
from

::::::::::
2005-2014.

4.2 NOx: Comparison of Tropospheric NO2 Column with OMI

Fig. 12(a) shows the annual mean OMI tropospheric NO2 column
:::::::
processed

:::
by

:::::::::::::::::::
Goldberg et al. (2021) and modelled NO2430

column trends from 2005 to 2014, and Fig. 12(b) shows the input NOx emission trends over the same time period. We see

that there is general agreement between the emissions and the model tropospheric NO2 column. Also, both show significant

positive trends over South Asia and Eastern China, and significant negative trends over Eastern USA and Western Europe.

These, in turn, are also consistent with the OMI tropospheric NO2 column observations (the OMI observations over the remote

ocean are likely to have large errors due to the observational detection limit.) From the literature, Miyazaki et al. (2017), who435

looked at an assimilation of multiple satellite datasets, including the OMI NO2 column, obtained a global non-lightning NOx

emission from 2005 to 2014 of a roughly constant value of 47.9TgN/yr. This also agrees well with the emissions inventory

used in our model, as shown in Fig. 1(c), where, even though we are slightly high-biased (about 8% higher), our global NOx

emissions are also stable from 2005 to 2014. Overall, these findings lend confidence in our model NOx trends from 2005 to

2014.440
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5 Conclusions

In this study, we systematically analyzed the sensitivity of [OH] to changes in drivers of OH over the 1980-2014 period using

the GFDL AM4.1 model. We attribute the [OH] changes to changes in emissions and meteorology individually as opposed

to a lumped approach adopted in the multimodel study by Stevenson et al. (2020). Such a decomposition allows for a clearer

mechanistic understanding of the main driving factors of either the trend or IAV. In addition, we analysed the OH budget terms,445

similar to Zhao et al. (2020), tracing the individual emissions to changes in the various budget terms, which in turn affects

[OH].

We found that annual mean global tropospheric airmass-weighted [OH] has increased by ∼ 10% compared to the 1998-2007

mean from 1980 to 2014, in agreement with multimodel comparisons of ESMs by Stevenson et al. (2020), and furthermore

has increased by ∼ 5% in 2014 compared to 1980, in agreement with multi-model studies such as from ACCMIP (Naik et al.,450

2013) and CCMI (Zhao et al., 2019). This modelled increasing [OH] trend, especially post-2007, is in contrast with the absence

of change (e.g., Nicely et al., 2020; Patra et al., 2021) or decreasing [OH] (e.g., Rigby et al., 2017; Turner et al., 2017) derived

from observationally-constrained inversion methods.

In our model, the increasing trend in [OH] is caused by the net effects of increasing NOx emissions, which increases [OH]

via both primary and secondary [OH] production, balanced by the increase in CH4 concentrations which tend to consume OH.455

The combined effects of NOx emissions and CH4 concentrations can account for the spatial distribution of the [OH] trends as

well. These findings agree with other studies, such as Naik et al. (2013), who also suggested the importance of NOx and CH4

in driving the modelled [OH] trend. Locally, CO emissions, meteorology and NMVOC emissions also play an important role

in driving the increasing [OH] trend, but their effects average out on the global level. Meanwhile, the observed [OH] IAV is

dominated by impacts from the IAV in biomass burning CO emissions as well as meteorology.460

We also foundthat
:
,
:::::
while

:
our model does a

::::
good

::::
job

::
in

::::::::
matching

::::::::
MOPITT

:::
CO

:::::::
column

::::
IAV

::::
over

:::
the

:::::::::
2001-2014

:::::::
period,

:::
our

:::::
model

:::::
does

:
a
:
poor job of matching MOPITT total column CO trends over the 2001-2014 period. Given that modelled

column CO trends were driven by input CO emission trends, this could in turn point towards some deficiencies in the input

emissions. Zheng et al. (2019) further suggest that emissions from CEDS, which is the anthropogenic CO emissions dataset

used in our study, are inconsistent for China and South Asia. Whereas CEDS suggests rapidly increasing CO from China and465

South Asia, Zheng et al. (2019) found instead a decreasing trend for China and a modestly-increasing one for South Asia.

The increasing CO trends from China and South Asia, in turn, leads
:::
lead

:
to higher CO levels. Additionally, we found that the

modelled tropospheric NO2 column trends qualitatively agrees
::::
agree with OMI satellite tropospheric NO2 column trends over

the 2005-2014 period. Thus, overall, the underestimated declining trend in CO emissions in our model could mean that the

actual modelled [OH] increase is larger than what was currently modelled.470

5.1 Implications
:::::::::
Discussion

Overall, based on the current set-up, the AM4.1 models an increase in tropospheric [OH] from 1980 to 2014. This is even in

the backdrop of the increase in CH4 throughout the period. As seen in Fig. 13, this causes the CH4 lifetime with respect to OH
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:::::::::
(calculated

:::
via

:::
the

:::::
global

::::::
annual

:::::
mean

:::::::::::
atmospheric

::::
CH4::::::

burden
::::::
divided

:::
by

::::::
annual

:::::
mean

::::
CH4:::::::::::

tropospheric
:::::::
chemical

::::
loss

:::
by

::::
OH) to decrease in the ’Base’ run by about 10%. In the absence of other changes, one would expect the increase in CH4 to475

reduce OH[
:::
OH], thereby further prolonging the CH4 lifetime. ,

:::::
which

:::
we

::
in

::::
fact

::
do

:::
see

::
in

::::
Fig.

::
13

::
in

:::
the

::::::
’CH4’

:::
run.

:
Instead, we

see that the increase in NOx together with the stalling of CO has led to a greater increase in OH [
:::
OH] than would be expected

by the increase in CH4, such that CH4 lifetime still continues to decrease. This helps to slow the accumulation of CH4 in the

atmosphere. However, despite the lower lifetime, CH4 concentrations have still continued to steadily increase. As a result of

our modelled increasing
:
If

::::
what

:::
we

:::::
found

::
in
::::
this

:::::
study

:
is
::::
true

:::
and

:
[OH] , this suggests

:::
has

:::::
indeed

:::::::::
increased,

:::
this

:::::
could

:::::::
suggest480

that studies trying to derive CH4 emissions from observed CH4 concentrations will underestimate CH4 emissions if they do not

take into account the increasing [OH].
::
We

:::::::::::
acknowledge

::::
that

::::
CH4::::::::::::

concentrations
:::
are

:::::::::
prescribed

:::
on

:::
the

::::::
surface

::
in
:::

the
:::::::

current

:::::
model

::::::
set-up,

::
so

::::
this

:::
can

::::
lead

::
to

::
an

:::::::::::::
underestimation

:::
of

::
the

:::::::
surface

:::::::
chemical

:::::::::
feedbacks.

:::::::::
Including

:::
the

::::::
surface

::::::::
feedbacks

::::::
would

:::::
likely

::::::
amplify

:::
the

::::::::
modelled

::::::
effects

::
of

::::
CH4:::

on [
:::
OH]

:
.
::::
This

::::
will

::
be

::::::
further

::::::::::
investigated

::
in

::
an

:::::::::::::::
emissions-driven

:::
run.

:

Also, in the future, should aggressive air quality policies cause a reduction in NOx emissions, this could cause the [OH] to485

decrease, thereby further accelerating the buildup of CH4 in the atmosphere. On the other hand, if CO emissions also decrease

concomitantly, this could offset the NOx reduction effects on [OH]. Future work could involve looking at how OH [
:::
OH] evolves

under future scenarios, such as the Shared Socioeconomic Pathways (SSPs) formulated as part of CMIP6. In particular, future

work could focus on whether NOx and CO will still play a dominant role in the future, under different scenarios of climate

change as well as emissions reductions. The recent COVID-19 related large reduction in emissions in cities across the world490

have provided a glimpse of what could happen in future scenarios. For example, Laughner et al. (2021) found that the decrease

in NOx emissions in 2020 led to a decrease in ozone which thereby led to a 2-4% decrease in global [OH], and this could have

contributed to the large [CH4] growth rate that year. This was further corroborated by Stevenson et al. (2022) and Peng et al.

(2022) who both found that about half of the large [CH4] growth rate was attributed to the decline in [OH] due to declining

NOx. Peng et al. (2022) also additionally showed that the effect of declining NOx emissions which led to decreased [OH]495

overwhelmed the impacts of the decline of other SCLFs
::::::
NTCFs like CO emissions. NOx emissions have since largely returned

back to pre-pandemic levels, and this could drive [OH] increases again. In the backdrop of the anthropogenic emission changes,

the pandemic years have also seen many large wildfire events as well, and the associated biomass burning emissions could also

impact [OH]. Overall, these could be interesting test cases to explore in ESMs with interactive chemistry.

In our paper, we explored the role of meteorology and input emission inventories in driving the [OH] trend during the500

1980-2014 period, but, as Murray et al. (2021) points out, there are many other factors within models that could be important

in driving inter- and intra-model [OH] variations, with key factors being the details of the implemented chemical scheme,

which has implications on oxidation of VOCs into CO and NOx lifetime, as well as other physical parameterizations, such as

lightning NOx altitude which also affects NOx lifetime. The importance of understanding the CO budget drivers and potential

biases is further underscored by the existing biases present in the GFDL AM4.1, such as in the seasonal mean CO column505

Horowitz et al. (2020)
:::::::::::::::::::
(Horowitz et al., 2020) and the CO column trend. Nonetheless, given that we have identified various

input emission drivers as playing a key role in driving the increasing [OH] trend over the 1980-2014 period, and other models

participating in CMIP6 also have likely used the same anthropogenic emission inventories, our study could also serve as a

23



motivation to do a similar sensitivity analysis in other CCMs, such as the other ESMs studied in Stevenson et al. (2020).

This could help elucidate the role of emissions in driving the multi-model mean trend, and potentially further emphasize the510

importance of accurate short-lived climate forcer emission inventories for both climate and air quality projections (Smith et al.,

2022).
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Figure 11. (a) Model comparison of annual mean CO column trends with MOPITT observations over the 2001-2014 period, and (b) CO

emission trends over the 2001-2014 period
:
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significant negative trends throughout the spatial domain. However, the modelled CO columns show significant trends positive trends above

China and Iand with weaker positive trends in parts of Africa and the Middle-East and negative trends over most other parts of the world. The

mixed modelled CO column trends
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(b), especially the increasing trend over China and South

Asia, and are in poor agreement with trends derived from MOPITT. Comparing
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the mismatch between observed
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raw

:
and modelled CO column trends could point towards some deficiencies in the input emissions, which

drive the high bias in CO column trends over China and South Asia and in turn leads to the general high bias globally due to transport from

these regions especially via the prevailing Westerlies (Zheng et al., 2018)
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detrended
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time
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series
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respectively.31



(b)(a)

Figure 12. (a) Model comparison of annual mean tropospheric NO2 column trends with OMI tropospheric NO2 observations
:::::::
processed

:::
by

::::::::::::::::
Goldberg et al. (2021) over the 2005-2014 period, and (b) NOx emission trends over the 2005-2014 period. Trends and stippling are as per

Fig. 3. We see that there is general agreement between the emissions and the model tropospheric NO2 column. Also, both show significant

positive trends over South Asia and Eastern China, and significant negative trends over Eastern USA and Western Europe. These, in turn, are

also consistent with the OMI tropospheric NO2 column observations. Overall, these findings lend confidence in our model NOx trends from

2005 to 2014.
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Figure 13. CH4 lifetime with respect to oxidation by OH for the different model runs. CH4 lifetime
:
is
::::::::
calculated

:::
via

::
the

:::::
global

:::::
annual

:::::
mean

:::::::::
atmospheric

::::
CH4 :::::

burden
::::::
divided

::
by

:::::
annual

::::
mean

::::
CH4::::::::::

tropospheric
:::::::
chemical

:::
loss

::
by

:::
OH.

::::
CH4::::::

lifetime
:
has decreased in the ’Base’ run even

as CH4 concentrations have increased, driven by [OH] increasesdue to increasing NOx emissions.

32


