

- 1 Measurement report: Diurnal variations of brown carbon during two distinct seasons in a
- 2 megacity in Northeast China
- Yuan Cheng¹, Xu-bing Cao¹, Jiu-meng Liu^{1,*}, Ying-jie Zhong¹, Qin-qin Yu¹, Qiang Zhang² and Ke bin He³
- ¹ State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin
 Institute of Technology, Harbin 150090, China
- ² Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System
 Science, Tsinghua University, Beijing 100084, China
- ³ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of
 Environment, Tsinghua University, Beijing 100084, China
- 11 *Corresponding author. Jiu-meng Liu (jiumengliu@hit.edu.cn).
- 12 Abstract
- 13 Brown carbon (BrC) represents an important target for the "win-win" strategy of mitigating climate
- 14 change and improving air quality. However, estimating co-benefits of BrC control remains difficult
- 15 for China, partially because current measurement results are insufficient to represent the highly
- 16 variable emission sources and meteorological conditions across different regions. In this study, we
- 17 investigated, for the first time, the diurnal variations of BrC during two distinct seasons in a largely
- 18 unexplored megacity in Northeast China. The winter campaign conducted in January of 2021 was
- 19 characterized by low temperatures rarely seen in other Chinese megacities (down to about -20 °C).
- 20 The mass absorption efficiencies of BrC at 365 nm (MAE₃₆₅) were found to be $\sim 10\%$ higher at night.
- The variations of MAE₃₆₅ could not be explained by the influence of residential biomass burning emissions or secondary aerosol formation, but were strongly associated with the changes of a diagnostic ratio for the relative importance of coal combustion and vehicle emissions ($R_{S/N}$). Given that most coal combustion activities were uninterruptible, the higher nighttime MAE₃₆₅ in winter were attributed primarily to increased emissions from heavy-duty diesel trucks. The spring

26	campaign conducted in April of 2021 was characterized by frequent occurrences of agricultural fires,
27	as supported by the intensive fire hotspots detected around Harbin and the more-than-doubled
28	levoglucosan to organic carbon ratios (LG/OC) compared to winter campaign. In spring, MAE_{365}
29	depended little on $R_{S/N}$ but exhibited a strong positive correlation with LG/OC, suggesting open
30	burning emissions as the dominant influencing factor for BrC's light absorption capacity. $\ensuremath{MAE_{365}}$
31	were ~70% higher at night for the spring campaign, pointing to the prevalence of nighttime
32	agricultural fires, which were presumably in response to local bans on open burning. It is noteworthy
33	that the agricultural fire emissions resulted in distinct peak at ~365 nm for the light absorption
34	spectra of BrC, and a candidate for the compounds at play was inferred to be C ₇ H ₇ NO ₄ . Due to the
35	presence of the ~365 nm peak, the absorption Ångstr öm exponents could not be properly determined
36	for the agricultural fire-impacted samples. In addition, the ~365 nm peak became much less
37	significant during the day, likely due to photo-bleaching of the relevant chromophores.

38 1. Introduction

39	Light-absorbing organic carbon, i.e., brown carbon (BrC), exerts important yet poorly
40	understood effects on climate and the environment (Brown et al., 2018; Zeng et al., 2020; Sand et
41	al., 2021). As a mixture of numerous organic compounds from both primary emissions and
42	secondary formation, BrC exhibits extreme complexity in spectroscopy, composition and evolution
43	(Laskin et al., 2015; Brege et al., 2021; Washenfelder et al., 2022). Measurement techniques for BrC
44	absorption mainly fell into two categories, including solvent extraction followed by light absorption
45	spectrum measurement (Chen and Bond, 2010; Hecobian et al., 2010) and apportionment of total
46	aerosol absorption to the contributions from black carbon and BrC (Yang et al., 2009; Lack et al.,
47	2012). So far, consistency between BrC results from these two types of approaches has not been
48	addressed, with variable relationships, either linear or non-linear, and unclear influencing factors
49	(Kumar et al., 2018; Zeng et al., 2022). This inconsistency introduced substantial difficulties to the
50	integration of BrC measurement results across studies and regions (Wang et al., 2022), which is
51	essential for unfolding the links between BrC sources and optical properties. In addition, efforts
52	were also made to explain BrC absorption on a molecular level. Several techniques were shown to
53	be powerful, such as electrospray ionization Fourier transform ion cyclotron resonance mass
54	spectrometry (ESI FT-ICR MS; Wozniak et al., 2008; Jiang et al., 2021; Zeng et al., 2021), high
55	performance liquid chromatography coupled with high resolution mass spectrometry
56	(HPLC/HRMS; Lin et al., 2018; Huang et al., 2022; Xu et al., 2022), and two-dimensional gas
57	chromatography with time of flight mass spectrometer (GC×GC-ToF-MS; Huo et al., 2021). These
58	techniques were more frequently applied to laboratory-generated primary or secondary BrC (e.g.,
59	Lin et al., 2015), which usually had less complex composition than ambient BrC and thus showed

- 60 relatively high fraction of resolvable chromophores, e.g., up to ~85% for those emitted by biomass
- 61 burning (Huang et al., 2022).

62 The absorbing nature of BrC makes it a non-negligible contributor to positive radiative forcing 63 (Saleh, 2020), while the considerable contribution of organic aerosol to fine particulate matter 64 (PM_{2.5}) makes BrC an important source of air pollution (Wang et al., 2019). Consequently, BrC 65 represents a key species for the "win-win" strategy of mitigating climate change and improving air 66 quality. Given the highly variable emission sources and meteorological conditions across different 67 regions in China, field observational results on BrC are far from being enough to constrain air 68 quality and climate models, limiting the ability to evaluate the co-benefits of BrC control. In this 69 study, we focused on a largely unexplored city cluster, the Harbin-Changchun (HC) metropolitan 70 area in Northeast China. Compared to other regions with intensive studies of BrC as well as other 71 air pollutants (e.g., the North China Plain), HC was characterized by extremely cold winter and 72 strong impacts of biomass burning on top of other anthropogenic emissions (e.g., from coal 73 combustion). The first feature was related to the relatively high latitudes of HC. For example, as the 74 northernmost megacity in China, Harbin has an average temperature of about -20°C in January, 75 significantly lower than that of Beijing. The second feature was related to the massive agricultural 76 sector in HC. Until recently, open burning was still an irreplaceable approach for the disposal of crop residues in this region, presumably because the amount of agricultural wastes were too huge 77 78 for the capacity of sustainable use. The agricultural fires frequently resulted in heavily-polluted 79 episodes with high $PM_{2.5}$ concentrations rarely encountered in other Chinese megacities (e.g., 80 hourly-average of ~1000 μ g/m³ in Harbin; Li et al., 2019). These two features highlighted the 81 uniqueness of HC for haze studies in China.

82	This measurement report, for the first time, presented field observational results on the diurnal
83	variations of BrC during two distinct seasons, i.e., a frigid winter and an agricultural fire-impacted
84	spring, in the central city of HC. Drivers for the diurnal variations were discussed based on
85	indicators of various sources. Particularly, the agricultural fires were found to result in unique
86	absorption spectra of brown carbon. This study provided implications for parameterization of BrC
87	in climate models.
88	2. Methods
89	2.1 Field sampling
90	Daytime and nighttime $PM_{2.5}$ samples were collected on the campus of Harbin Institute of
91	Technology (HIT) during winter and spring of 2021. HIT was surrounded by residential and
92	commercial areas, without major industrial sources nearby, and thus represented a typical urban site.
93	The sampling was done by a mass flow controlled high-volume sampler (TE-6070BLX-2.5-HVS;
94	Tisch Environmental, Inc., OH, USA), which was operated at a flow rate of 1.13 m ³ /min using pre-
95	baked quartz-fiber filters (8" \times 10", 2500 QAT-UP; Pall Corporation, NY, USA). Daytime and
96	nighttime samples were collected from 9:00 to 16:00 and from 21:00 to 5:00 of the next day,
97	respectively. The winter campaign covered the entire January of 2021, and the spring campaign was
98	conducted during 10–30 April, 2021.
99	2.2 Laboratory analysis
100	Two punches with diameters of 20 mm were taken from each sample, combined and then

Two punches with diameters of 20 mm were taken from each sample, combined and then
extracted by deionized water. The water extract was analyzed using a Dionex ion chromatography
system (ICS-5000⁺; Thermo Fisher Scientific Inc., MA, USA). Levoglucosan, an organic tracer for
biomass burning, was determined by the high-performance anion-exchange chromatography

104	coupled to pulsed amperometric detection (HPAEC-PAD) method (Engling et al., 2006; Yttri et al.,
105	2015). Inorganic ions such as nitrate, sulfate, chloride, ammonium and potassium were also
106	measured. Linear regression of the total cation concentration on that of total anion (both in μ eq/m ³)
107	led to a slope of 1.14 \pm 0.01 (intercept was set as zero; $r = 0.99$), indicating a neutralized feature of
108	the Harbin aerosols.
109	Two punches with diameters of 47 mm were taken from each sample and used to determine
110	carbon fractions. One punch was directly measured for organic carbon and elemental carbon, while
111	the other punch was immersed in methanol (HPLC grade; Fisher Scientific Company L.L.C., NJ,
112	USA) for an hour without stirring or sonication, dried in air for another hour, and then analyzed.
113	Both punches were measured by a Thermal/Optical Carbon Analyzer (DRI-2001; Atmoslytic Inc.,
114	CA, USA), which was operated with two commonly-used temperature protocols (i.e., IMPROVE-
115	A and NIOSH) and transmittance charring correction. The difference of total carbon (TC)
116	concentrations between the untreated and extracted punches (TC _{untreated} – TC _{extracted}) was used to
117	represent the amount of organic carbon that is soluble in methanol (MSOC), following the method
118	developed by Chen and Bond (2010) and refined by Cheng et al. (2016). Given that the TC
119	measurement was independent of the temperature protocol used, both $TC_{untreated}$ and $TC_{extracted}$ were
120	determined as the averages of total carbon results from IMPROVE-A and NIOSH. A benefit of this
121	approach was that the uncertainty of MSOC (σ) could be estimated for each sample based on the
122	parallel TC measurements by different protocols:
123	$\sigma = \sqrt{\left(\text{SD of TC}_{\text{untreated}}\right)^2 + \left(\text{SD of TC}_{\text{extracted}}\right)^2)} / \left(\text{TC}_{\text{untreated}} - \text{TC}_{\text{extracted}}\right)$

- 124 where SD indicates standard deviation. In this study, σ averaged 3.3 ±2.9% with a median of 2.4%.
- 125 In addition, organic compounds that are in-soluble in methanol, i.e., MIOC, was measured as the

126	organic carbon concentration of the extracted punch. Unless stated otherwise, (i) OC involved in
127	the following discussions indicates the sum of MSOC and MIOC, and correspondingly, EC indicates
128	elemental carbon measured by the extracted punch; and (ii) all the carbonaceous aerosol
129	concentrations are based on IMPROVE-A, except MSOC which did not rely on analytical protocol.
130	The MSOC to OC ratios averaged 0.90 \pm 0.05, indicating an overall high extraction efficiency of
131	methanol for dissolving organic aerosols.
132	Light absorption spectra of the methanol extracts were measured over the wavelength (λ) range
133	of 200–1110 nm, using a spectrophotometer coupled with a 2.5-m long liquid waveguide capillary
134	cell (LWCC; World Precision Instrument, FL, USA). The spectrophotometer, consisting of a DH-
135	mini UV-VIS-NIR light source and a Maya2000 Pro spectrometer (Ocean Optics Inc., FL, USA),
136	provided wavelength-resolved optical attenuation (\mbox{ATN}_{λ}) of the dissolved BrC, which could then
137	be converted to BrC absorption coefficient $[(b_{abs})_{\lambda}]$ (Hecobian et al., 2010). The ratio of $(b_{abs})_{\lambda}$ to
138	MSOC concentration was considered the bulk mass absorption efficiency (MAE $_{\lambda}$) of brown carbon,
139	given the close-to-one MSOC/OC. The wavelength dependence of BrC absorption was determined
140	based on $ln(ATN_{\lambda})$ and $ln(\lambda),$ and was expressed as the absorption Ångström exponent (AAE). The
141	AAE calculation was performed over 310–460 nm, the same λ range adopted by previous studies
142	conducted at the same site using the same laboratory analysis procedures (Cheng et al., 2022a).
143	2.3 Additional data sets used
144	Air quality data and meteorological data were obtained with a time resolution of 1 hour from
145	the China National Environmental Monitoring Center (CNEMC; https://air.cnemc.cn:18007/, last

- 146 access: 1 January, 2023) and Weather Underground (https://www.wunderground.com/, last access:
- 147 1 January, 2023), respectively. CNEMC operated 12 monitoring sites in Harbin, with 3 of them

148	located within \sim 5 km from the HIT sampling site. The reconstructed PM _{2.5} masses, which were
149	derived from observational results on aerosol compositions at HIT, were generally in line with the
150	fine particle concentrations directly measured at the nearby CNEMC sites. Here the reconstructed
151	$PM_{2.5}$ was calculated as the sum of organic matter (1.6 $\times OC$), elemental carbon and inorganic ions.
152	Comparison of the reconstructed and directly-measured $\text{PM}_{2.5}$ concentrations showed relative
153	standard deviations of 9-11% (in terms of median value) for the three CNEMC sites nearby,
154	demonstrating HIT as a representative urban site for Harbin. In this study, only the air quality data
155	from the nearest CNEMC site, i.e., Taping Hongwei Park, were further investigated together with
156	the aerosol components measured at HIT.
157	3. Results and discussion
158	3.1 Why was the wintertime brown carbon more absorbing at night?

159 The wavelength-resolved b_{abs} and MAE were primarily explored at 365 nm, and the corresponding values were referred to as $(b_{abs})_{365}$ and MAE₃₆₅, respectively. $(b_{abs})_{365}$ and MSOC 160 161 correlated strongly for the winter campaign (Figure 1a), that the linear regression of $(b_{abs})_{365}$ against 162 MSOC led to an r value of 0.97 and a slope of 1.63 \pm 0.02 m²/gC (with the intercept set as zero; 163 MAE₃₆₅ averaged 1.55 \pm 0.18 m²/gC). However, the nighttime samples were found to exhibit 164 slightly higher MAE_{365} values than the daytime ones, with averages of 1.61 ± 0.15 and 1.48 ± 0.18 165 m²/gC, respectively (Figure 1b). In this study, we did not perform source apportionment analysis for brown carbon due to the relatively small number of samples collected. Instead, several indirect 166 167 indicators were introduced to interpret the diurnal variations of MAE₃₆₅.

168 The first indicator was the levoglucosan to OC ratio (LG/OC; on a basis of carbon mass, the169 same hereinafter). In general, higher LG/OC values indicate a stronger contribution of biomass

170	burning (BB) emissions to OC. The BB activities in January could be attributed primarily to
171	household use of biofuels, e.g., for heating and cooking. This is because (i) few fire hotspot was
172	detected in Harbin and surrounding regions throughout the winter campaign (Figure 2a), and (ii) the
173	relationship between LG and water-soluble potassium (K ⁺), another commonly-used BB tracer, did
174	not show evidence for apparent influence of open burning (Figure 3a). As suggested by previous
175	studies conducted during heating season in Harbin (Cheng et al., 2022b), the LG to $K^{\!\scriptscriptstyle +}$ ratios were
176	relatively low and constant (\sim 0.5) with the absence of agricultural fires, but became substantially
177	higher (typically above 1.0) during open burning episodes. This pattern was attributed to the
178	relatively low combustion efficiencies (CE) of agricultural fires, which favored the increase of LG
179	emissions but would not change K^+ emissions significantly (Gao et al., 2003). It should be noted
180	that in Cheng et al. (2022b), CE were not directly measured for different types of burning activities
181	and instead were investigated based on the ratios of BB organic carbon to BB elemental carbon (R_{BB} ,
182	derived from positive matrix factorization, i.e., PMF, analysis). Substantial increases of R_{BB} were
183	repeatedly observed during open burning episodes occurring in different seasons, e.g., winter or
184	spring depending on the regulatory policies. Thus the agricultural fires were inferred to have
185	relatively low CE levels (Cheng et al., 2022b), as BB source emission studies typically showed a
186	decreasing trend for the emission ratio of organic carbon to elemental carbon with increasing
187	combustion efficiency (Pokhrel et al., 2016; McClure et al., 2020). Actually, crops residues burned
188	on farmland were usually not intentionally dried and thus could have relatively high water contents.
189	This may partially explain the relatively low CE of agricultural fires. In the present study, LG
190	correlated strongly with K ⁺ for the entire January ($r = 0.96$, with a slope, i.e., $\Delta LG/\Delta K^+$, of 0.55 ±
191	0.02; Figure 3a) and the LG to $K^{\scriptscriptstyle +}$ ratios averaged 0.46 \pm 0.11, pointing to the dominance of

192	residential burning in BB emissions. In addition, the residential burning activities were more
193	intensive at night, as can be seen from the elevated LG/OC compared to daytime results (1.10 \pm
194	0.26% vs. 0.88 \pm 0.22%; Figure 1c). Comparison of the LG to EC ratios between the nighttime and
195	daytime samples (0.22 ± 0.06 vs. 0.15 ± 0.05) reached the same conclusion. Indeed, biomass burning
196	could emit a number of strong chromophores such as nitrogen-containing aromatic compounds
197	(Mohr et al., 2013; Lin et al., 2016, 2017; Xie et al., 2019; Salvador et al., 2021). However, for the
198	January samples, MAE ₃₆₅ did not show clear dependence on LG/OC or LG/EC ($r = 0.42$ and 0.12,
199	respectively; Figure 1e), suggesting that in addition to BB emissions, there must exist other factors
200	that were more responsible for the diurnal variations of wintertime MAE_{365} .
201	The second indicator was $R_{S/N}$, defined as the ratio of (n-sulfur dioxide + n-sulfate) to (n-
202	nitrogen dioxide + n-nitrate), where "n" indicates molar concentration. Given that sulfate and nitrate
203	are typically considered as secondary, $R_{S/N}$ could be roughly traced back to the emission ratios of
204	sulfur dioxide (SO ₂) to nitrogen oxides (NO _x), i.e., $E_{S/N}$, from combustion of various types of fuels
205	(e.g., coal, gasoline, diesel and biomass). Previous studies suggested that $E_{S/N}$ differed substantially
206	between emissions from vehicles, coal combustion and biomass burning. In China, the fuel quality
207	standards have been greatly strengthened for on-road vehicles since early 2000s, e.g., the maximum
208	sulfur content allowed in diesel was reduced from 2000 ppm (required by the China I standard
209	implemented in 2002) to 10 ppm (required by the China V standard implemented in 2017). Thus,
210	recent studies on vehicular exhausts typically suggested that the SO ₂ emission factors (EF-SO ₂)
211	were about two orders of magnitude lower than those of NOx (EF-NOx; Zhang et al., 2015; Li et
212	al., 2019) and consequently, the corresponding $E_{S/N}$ should be approximately ~10 ⁻² . EF-SO ₂ were
213	also usually lower than EF-NOx for biomass burning (Zhang et al., 2000; McMeeking et al., 2009;

214	Liu et al., 2016; Wu et al., 2022), but their differences were not as large as those observed in vehicle
215	emissions, leading to $E_{S/N}$ values of ~10 ⁻¹ . Unlike vehicles or biomass burning, coal combustion
216	usually resulted in higher EF-SO ₂ compared to EF-NOx (Zhang et al., 2000; Du et al., 2017; Li et
217	al., 2017), which could be translated to $E_{S/N}$ values of above one. On the other hand, primary species
218	could be transformed rapidly during atmospheric aging, e.g., a sharp loss of $NO_{\boldsymbol{x}}$ and a
219	corresponding burst in nitrate were observed shortly after emission when tracking plumes from
220	diesel trucks (Shen et al., 2021) and agricultural fires (Akagi et al., 2012; Liu et al., 2016). Thus it
221	should be acceptable to assume that for the pollutants emitted by a specific source, the $R_{S/N}$ of aged
222	plumes was generally comparable with the $E_{S/N}$ of fresh emissions.
223	The ambient $R_{S/N}$ averaged 0.6 ±0.2 during the winter campaign, differing substantially from
224	the $E_{S/N}$ of coal combustion or vehicle emissions but in the same order of magnitude as the $E_{S/N}$ of
225	biomass burning. Actually, no evidence supported BB emissions as a major regulating factor for
226	$R_{S/N}$, e.g., as indicated by the insignificant correlations between $R_{S/N}$ and LG/EC ($r = 0.24$ and 0.01
227	for the daytime and nighttime samples, respectively). Then $R_{S/N}$ was expected to be more sensitive
228	to the changes of coal combustion and vehicle emissions, e.g., increase of coal combustion
229	emissions would effectively elevate R_{SN} whereas higher vehicle emissions favor the decrease of
230	$R_{\rm S/N}$. During the winter campaign, lower $R_{\rm S/N}$ were observed at night (Figure 1d), averaging 0.5 \pm
231	0.1 compared to an average $R_{\rm S/N}$ of 0.7 \pm 0.2 for the daytime samples. In principle, this pattern could
232	be caused by decreased coal combustion emissions and/or increased vehicle emissions at night.
233	However, it seemed that the former did not play an important role, since many coal combustion
234	activities (e.g., those for heating supply, power generation and some industrial processes) were
235	uninterruptible, i.e., would not be stopped at night (Lian et al., 2020; Chu et al., 2021; Yuan et al.,

236	2021). Then the most likely cause for the lower nighttime $R_{S/N}$ was increased vehicle emissions.
237	According to the Road Traffic Regulations released by Harbin, heavy-duty diesel trucks (HDDT),
238	which are known to include high- or super-emitters (Dallmann et al., 2012), are allowed to run on
239	the roads in the main urban area only from 21:00 to 5:00 of the next day. This to a large extent
240	explains the inference on the increase of vehicle emissions during nighttime. MAE_{365} exhibited a
241	clear negative dependence on $R_{S/N}$ for all the winter samples (Figure 1f), suggesting vehicle
242	emissions, especially those from HDDT, as a dominant influencing factor for $\ensuremath{MAE_{365}}$ (under the
243	precondition of relatively stable coal combustion emissions).
244	The last two indicators were associated with secondary aerosol formation, including the sulfur
245	oxidation ratio (SOR) and the nitrogen oxidation ratio (NOR) defined as n-sulfate/(n-sulfate + n-
246	SO ₂) and n-nitrate/(n-nitrate + n-NO ₂), respectively. The entire winter campaign experienced low
247	temperatures, which averaged -16 ± 5 and -21 ± 6 °C for the daytime and nighttime samples,
248	respectively. In general, the transformation of gaseous precursors to secondary inorganic ions was
249	inefficient in the frigid atmosphere, as indicated by the overall low levels of both SOR and NOR.
250	However, both indicators exhibited noticeable differences between daytime and nighttime samples.
251	The diurnal variation of SOR was found to be associated with the higher relative humidity (RH)
252	levels at night (Figure 4a). For the vast majority of winter samples, RH fell into the ranges of 60-
253	80 and 70-90% during daytime and nighttime, respectively. SOR were largely unchanged when RH
254	increased from 60-70% to 70-80% during the day, whereas for the common RH range shared by
255	the daytime and nighttime samples (i.e., 70-80%), SOR were slightly lower at night, likely due to
256	the drop of temperatures. In addition, a positive dependence of SOR on RH was evident for the
257	nighttime samples. Although SOR showed almost the same median values (~0.1) for the RH ranges

258	of 70-80 and 80-90% at night, relatively high SOR levels of above 0.2 were more frequently
259	observed in the latter case. Such high SOR were rarely seen during the day, indicating that RH
260	played a more important role than temperature in sulfate formation. The enhanced sulfate formation
261	at high RH was presumably through heterogeneous reactions (Su et al., 2020; Liu et al., 2021), since
262	the low temperatures encountered during the winter campaign did not rule out the presence of
263	aerosol water, e.g., liquid water was observed to remain super-cooled in clouds down to
264	temperatures of as low as -40 °C (Tabazadeh et al., 2002). Compared to SOR, different patterns of
265	diurnal variation were observed for NOR (Figure 4b). First, the difference between daytime and
266	nighttime NOR was more significant for the RH range of 70-80%, e.g., as indicated by the larger
267	decrease of median NOR at night (0.06, compared to a corresponding value of 0.02 for SOR).
268	Second, the nighttime NOR elevated substantially as RH increased from 70-80% to 80-90%, but
269	still with lower levels compared to the daytime results. Given that relatively low temperatures favor
270	the partitioning of semi-volatile nitrate into aerosol phase, the less efficient nitrate formation at night
271	could not be explained by the partitioning process and instead should be primarily attributed to
272	reduced photooxidation of NO ₂ (Chen et al., 2020). Based on a synthesis of the diurnal variations
273	observed for SOR and NOR, the nighttime samples were characterized by enhanced heterogeneous
274	chemistry, which did not require sunlight as indicated by the RH-dependent increase of SOR under
275	dark conditions, and weakened photochemical reactions. The overall effect of these two factors on
276	secondary organic aerosol (SOA) formation was inconclusive and thus it remained difficult to
277	unfold the role of SOA in the diurnal variations of MAE $_{365}$. Actually, it appeared that MAE $_{365}$ was
278	not strongly influenced by SOA during the winter campaign. For example, when RH increased from
279	70–80% to 80–90% at night, the MAE $_{365}$ were nearly constant (e.g., with the same average value of

280

281	3.2 Why did the springtime MAE_{365} show more significant diurnal variations?
282	Compared to the wintertime results, the average MAE_{365} was lower in spring (1.33 vs. 1.55
283	m^2/gC) but the corresponding standard deviation was much higher (0.62 vs. 0.18 m^2/gC), indicating
284	that the spring samples varied more significantly with respect to the absorption capacity of brown
285	carbon (Figure 5a). This feature could also be seen from the more pronounced diurnal variations of
286	MAE ₃₆₅ observed in spring (Figure 5b), e.g., the nighttime MAE ₃₆₅ were on average \sim 70% and 10%
287	larger than the daytime values during the spring and winter measurement periods, respectively. For
288	the winter campaign, the slightly elevated MAE_{365} at night had been primarily attributed to increased
289	vehicle emissions, as indicated by a ~35% decrease of $R_{S/N}$. In spring, $R_{S/N}$ were also lower at night,
290	by ~40% compared to the daytime results (Figure 5d). Given that the two campaigns showed
291	comparable discrepancies between the nighttime and daytime $R_{S/N}$, increase of vehicle emissions at
292	night was presumably not the dominant driver for the much stronger diurnal variations of MAE_{365}
293	observed in spring. Actually, MAE ₃₆₅ was almost independent of $R_{S/N}$ for the spring samples. For
294	example, the MAE_{365} values were found to fall into two well-separated ranges (above 2 and ${\sim}0.5{-}$
295	1.5 m ² /gC, with the former observed only at night) for the samples with relatively low $R_{S/N}$ levels
296	(below 0.4), indicating that reduced $R_{\rm S/N}$ was ineffective to explain the high MAE ₃₆₅ events
297	encountered in spring (Figure 5f). In addition to increased vehicle emissions at night, therefore,
298	there must exist other factors which were more responsible for the significant diurnal variations of
299	springtime MAE ₃₆₅ .

 $1.6 \text{ m}^2/\text{gC}$ for the two RH ranges) despite the enhancement of heterogeneous chemistry.

We first evaluated the influence of secondary aerosol formation. The spring campaign
experienced lower RH and substantially higher temperatures compared to winter, by ~25% and

302	30 °C, respectively. The springtime SOR were lower than the wintertime results (0.12 \pm 0.06 vs.
303	0.15 ± 0.07), whereas an opposite pattern was observed for NOR (0.16 ± 0.08 vs. 0.12 ± 0.06). The
304	seasonal variations of SOR and NOR provided additional evidence for the inferences that the sulfate
305	and nitrate formation was more strongly contributed by heterogeneous and photochemical reactions,
306	respectively. For the spring campaign, the daytime and nighttime SOR were in general comparable
307	(Figure S1a) and no clear evidence was observed for the prevalence of heterogeneous chemistry,
308	presumably due to the rare occurrence of high RH conditions either during the day or at night.
309	Unlike SOR, the daytime NOR were considerably higher than the night time results (0.18 ± 0.09 vs.
310	0.14 \pm 0.08; Figure S1b), pointing to enhanced photochemistry during the day. This pattern could
311	be partially responsible for the relatively low daytime MAE ₃₆₅ , since secondary brown carbon was
312	typically less light-absorbing than primary BrC (Kumar et al., 2018; Cappa et al., 2020; Ni et al.,
313	2021). However, MAE ₃₆₅ did not exhibit clear dependence on NOR or the nitrate to OC ratio (NO_3^-
314	/OC), e.g., the high MAE ₃₆₅ events were found to be associated with moderate NOR and NO_3^-/OC
315	levels (Figure S2). Thus for the spring campaign, photochemistry should not be the major
316	influencing factor for MAE ₃₆₅ , either.
317	We then investigated the role of biomass burning. Unlike the wintertime results, MAE_{365}

We then investigated the role of biomass burning. Unlike the wintertime results, MAE_{365} 317 318 showed a strong positive correlation with LG/OC (r = 0.84) in spring (Figure 5e), suggesting 319 biomass burning emissions as the dominant driver for the variations of MAE₃₆₅. It is noteworthy 320 that the LG to OC ratios were substantially higher in spring than in winter, with averages of 3.11 \pm 321 1.70% and 0.99 ± 0.26 , respectively. This pattern could not be explained by seasonal variations in residential consumption of biofuels, since April experienced much higher temperatures than January 322 (averaging 11 and -19 °C, respectively). Instead, the elevated springtime LG/OC should be 323

324	attributed primarily to open burning, as supported by the intensive fire hotspots detected around
325	Harbin in April (Figure 2b). The seasonal variations of LG to K^+ ratio (LG/ K^+) also suggested that
326	the dominant burning ways were different between winter and spring. Compared to the relatively
327	small and constant LG/K ⁺ observed in January (0.46 \pm 0.11), the ratios were nearly tripled in April
328	(1.28 ± 0.61) with more significant sample-by-sample differences (between ~0.5–3.5) (Figure 3b).
329	Recalling that the transition from flaming to smoldering combustion favored the increase of LG/K^+
330	(Gao et al., 2003), the springtime burning should have relatively low and variable combustion
331	efficiencies. This inference was in line with the fact that the agricultural fires were usually
332	uncontrolled, e.g., with respect to water content of crop residues and abundance of oxygen. In all,
333	for the spring campaign, the dominant driver for the variations of LG/OC and MAE $_{365}$ could be
334	further identified as open burning. Subsequently, the higher LG/OC and MAE $_{365}$ at night (Figures
335	5b-5c) could be attributed primarily to increased agricultural fires. The preference on nighttime
336	burning was not surprising, since the agricultural fires were illegal, i.e., nominally prohibited by the
337	Government of Heilongjiang Province.
338	It should be noted that the agricultural fire emissions increased LG/OC but had minimal
339	influence on $R_{S/N}$ (Figure S3). For example, the nighttime samples collected in spring differed
340	substantially with respect to the impact of agricultural fires, as indicated by their variable LG/OC
341	which spanned nearly one order of magnitude. However, no clear pattern was observed for $R_{S/N}$ with
342	increasing LG/OC, e.g., linear regression of $R_{S/N}$ on LG/OC showed an extremely low r value of
343	0.07.

The frequent occurrences of agricultural fires during April, 2021 to some extent masked the
"background" MAE₃₆₅, i.e., the value representative for the spring conditions without significant

346	influence of open burning. In spring, all the samples with LG/K^+ ratios of above one, i.e., a chemical
347	signature for apparent impacts of agricultural fires, were found to have LG/OC ratios larger than
348	2%. Thus in the following discussions, LG/OC of $>$ 2% was used as an indicator for open burning
349	episodes and correspondingly, spring samples with LG/OC of below 2% were referred to as typical
350	ones. MAE_{365} averaged 0.80 $\pm 0.22~m^2/gC$ for the typical samples of spring, lower than results from
351	the winter campaign (1.55 ±0.18 m²/gC; Figure S4a). This seasonal pattern coincided with the
352	overall lower $R_{S/N}$ in spring (Figure S4b). It was unlikely that the number of in-use vehicles or the
353	fleet composition in Harbin could vary significantly between January and April of the same year.
354	Thus the reduced springtime $R_{S/N}$, i.e., the relatively low MAE ₃₆₅ with the absence of agricultural
355	fires, should be caused mainly by the decrease of coal combustion emissions, e.g., due to the less
356	demand for heating.
357	3.3 Unique wavelength dependence of BrC absorption during agricultural fire episodes
357 358	3.3 Unique wavelength dependence of BrC absorption during agricultural fire episodes The agricultural fires not only elevated MAE_{365} but also changed the wavelength dependence
358	The agricultural fires not only elevated MAE_{365} but also changed the wavelength dependence
358 359	The agricultural fires not only elevated MAE_{365} but also changed the wavelength dependence of brown carbon. For the wavelength range used for AAE calculation (310–460 nm), the detection
358 359 360	The agricultural fires not only elevated MAE ₃₆₅ but also changed the wavelength dependence of brown carbon. For the wavelength range used for AAE calculation (310–460 nm), the detection limit of optical attenuation (ATN _{LOD}) was ~0.02, which was determined as three times the maximum
358 359 360 361	The agricultural fires not only elevated MAE ₃₆₅ but also changed the wavelength dependence of brown carbon. For the wavelength range used for AAE calculation (310–460 nm), the detection limit of optical attenuation (ATN _{LOD}) was ~0.02, which was determined as three times the maximum standard deviation of parallel ATN _{λ} results from blank filters. Before further discussions, we
358 359 360 361 362	The agricultural fires not only elevated MAE ₃₆₅ but also changed the wavelength dependence of brown carbon. For the wavelength range used for AAE calculation (310–460 nm), the detection limit of optical attenuation (ATN _{LOD}) was ~0.02, which was determined as three times the maximum standard deviation of parallel ATN _{λ} results from blank filters. Before further discussions, we introduced a new term "relative ln(ATN _{λ})", i.e., ln(ATN _{λ}) [*] calculated as ln(ATN _{λ}) – ln(ATN _{LOD}).
358 359 360 361 362 363	The agricultural fires not only elevated MAE ₃₆₅ but also changed the wavelength dependence of brown carbon. For the wavelength range used for AAE calculation (310–460 nm), the detection limit of optical attenuation (ATN _{LOD}) was ~0.02, which was determined as three times the maximum standard deviation of parallel ATN _{λ} results from blank filters. Before further discussions, we introduced a new term "relative ln(ATN _{λ})", i.e., ln(ATN _{λ}) [*] calculated as ln(ATN _{λ}) – ln(ATN _{LOD}). A benefit of using the new term was that a ln(ATN _{λ}) [*] value of zero corresponded to ATN _{LOD} and
358 359 360 361 362 363 364	The agricultural fires not only elevated MAE ₃₆₅ but also changed the wavelength dependence of brown carbon. For the wavelength range used for AAE calculation (310–460 nm), the detection limit of optical attenuation (ATN _{LOD}) was ~0.02, which was determined as three times the maximum standard deviation of parallel ATN _{λ} results from blank filters. Before further discussions, we introduced a new term "relative ln(ATN _{λ})", i.e., ln(ATN _{λ})* calculated as ln(ATN _{λ}) – ln(ATN _{LOD}). A benefit of using the new term was that a ln(ATN _{λ})* value of zero corresponded to ATN _{LOD} and thus could be interpreted independently, e.g., ATN _{LOD} was independent of the sampling or analytical

- 368 dependence of $\ln(ATN_{\lambda})^*$ on $\ln(\lambda)$ could be properly approximated by a linear function, usually with
- 369 r values of above 0.995. In this case, AAE could be reliably determined, and an average value of
- 6.92 ± 0.28 was obtained.
- 371 The relationship between $\ln(ATN_{\lambda})^*$ and $\ln(\lambda)$ became non-linear for the open burning episodes.
- 372 To more quantitatively describe the non-linearity, we added an "auxiliary line" to each measured
- 373 spectrum (Figure 6a), by drawing a line between the two points with x values of $\ln(310)$ and $\ln(460)$.
- 374 The "auxiliary line" could be considered an assumed spectrum with linear dependence of $\ln(ATN_{\lambda})^*$
- on $\ln(\lambda)$. The measured spectrum was always above the assumed one and their largest difference was typically observed at ~365 nm, pointing to the presence of distinct BrC chromophores with
- 377 absorption peak around this wavelength.

378 The influence of such chromophores on BrC absorption could be estimated by the following 379 three indicators. The first one (*F*) was related to the difference between the measured and assumed 380 $\ln(\text{ATN}_{\lambda})^*$ at 365 nm:

 $F = \left[\ln \left(\text{ATN}_{365} \right)_{\text{m}}^{*} - \ln \left(\text{ATN}_{365} \right)_{\text{a}}^{*} \right] / \ln \left(\text{ATN}_{365} \right)_{\text{a}}^{*}$, where the subscripts "m" and "a" indicate 381 382 results from the measured and assumed spectra, respectively (Figure 6a). The second indicator (K) 383 was related to the area enclosed between the two spectra (S_2): $K = S_2/S_1$, where S_1 indicates the area 384 enclosed by the assumed spectrum and x-axis (Figure 6b). The last indicator was $\Delta(b_{abs})_{365}$ 385 calculated as $(b_{abs})_{365}^{m} - (b_{abs})_{365}^{a}$, where the superscripts "m" and "a" indicate absorption coefficients calculated based on the measured and assumed spectra, respectively. F and K exhibited 386 387 a strong linear correlation for the open burning episodes (r = 0.99; Figure 6c), indicating that the 388 differences between the measured and assumed spectra were likely caused by the same class of BrC 389 compounds. In addition, these compounds could be primarily traced back to biomass burning, since

390	$\Delta(b_{abs})_{365}$ showed a positive dependence on LG/OC (Figure 6d). A candidate for such compounds
391	was $C_7H_7NO_4$ (a methyl-substituted nitrocatechol), based on a synthesis of absorption spectra
392	measured for various BrC chromophores (Huang et al., 2020) and molecular characterization results
393	for biomass burning emissions (Lin et al., 2016, 2017; Xie et al., 2019, 2020). Chamber experiments
394	by Iinuma et al. (2010) suggested that $C_7H_7NO_4$ could also be formed through photooxidation of
395	gaseous precursors emitted by biomass burning (m-cresol). In this study, however, all the samples
396	with relatively high $\Delta(b_{abs})_{365}$ levels (e.g., above 20 Mm ⁻¹) were collected at night, indicating that
397	the distinct BrC chromophores with absorption peak at ~365 nm (like $C_7H_7NO_4$) were more strongly
398	associated with primary emissions from agricultural fires. In addition, the chromophores seemed to
399	be subject to photo-bleaching, as both F and K decreased substantially (by ~65%) during the day
400	compared to the nighttime results (Figure 7).
401	For the open burning episodes, the distinct absorption peak at ~365 nm prohibited a proper
402	determination of AAE. If enforcing a linear function for the dependence of $\ln(ATN_{\lambda})^*$ on $\ln(\lambda)$, lower
403	<i>r</i> values would be derived (down to ~0.97, with an average of 0.992 ± 0.007) compared to the typical
404	samples (averaging 0.998 \pm 0.002). In addition, r showed a decreasing trend with the increase of
405	LG/OC (Figure 6e), suggesting that the relationship between $\ln(ATN_{\lambda})^{*}$ and $\ln(\lambda)$ deviated more
406	significantly from linearity as the ~365 nm absorption peak, i.e., the influence of agricultural fires,
407	became more significant. We suggest that for the open burning episodes, the AAE results should be
408	interpreted with caution, although they could be calculated mathematically with reasonable r values
409	(e.g., even the minimum <i>r</i> appeared acceptable).

410 3.4 Diurnal variations of wintertime AAE

411 Similar to the typical samples of spring, $\ln(ATN_{\lambda})^{*}$ exhibited linear dependences on $\ln(\lambda)$ for

412	all the winter samples. The wintertime AAE were higher at night compared to those observed during
413	the day (with averages of 7.33 ±0.14 and 6.76 ±0.11 , respectively), consistent with the pattern
414	observed during winter in Beijing (Li et al., 2020). The relative abundance of secondary OC (SOC)
415	has been considered an important influencing factor for AAE, e.g., an increasing trend was observed
416	for AAE during long-range transport of BrC over the Indo-Gangetic Plain (Dasari et al., 2019).
417	Although SOC or its organic tracer was not determined in this study, previous source apportionment
418	results from Harbin (based on PMF) showed a strong correlation between SOC and sulfate, with
419	largely consistent relationships among different campaigns (Cheng et al., 2022b). Thus we used
420	sulfate as an indicator for SOC. During the winter campaign, the sulfate to OC ratios were lower at
421	night (averaging 0.38, compared to 0.44 during the day), pointing to decreased fractions of SOC in
422	OC. This inference was consistent with the higher LG/OC and $R_{S/N}$ levels observed at night, which
423	had been attributed to increased emissions from residential biomass burning and vehicular exhausts,
424	respectively. Thus regarding the association between AAE and SOC formation, results from the
425	winter campaign were inconsistent with Dasari et al. (2019), but the reason remained unclear.
426	Molecular characterization of organic aerosols should be necessary to unfold the response of AAE
427	to changes in BrC sources.
428	4. Conclusions
429	Diurnal variations of BrC were investigated during two distinct seasons in the northernmost
430	megacity in China. The winter campaign was characterized by low temperatures rarely seen in other
431	hotspots of air pollution studies such as the North China Plain. The wintertime BrC aerosols were

- 432 slightly more absorbing at night, with an average MAE_{365} of 1.61 $\pm 0.15~m^2/gC$ compared to 1.48 \pm
- 433 0.18 m²/gC during the day. Various indicators were used to explain the observed diurnal variations

434	of MAE $_{365}\!\!$, including those associated with biomass burning emissions (LG/K+ and LG/OC),
435	relative importance of coal combustion and vehicle emissions $(R_{S/N})$ and secondary aerosol
436	formation (SOR and NOR). For the winter campaign, the nighttime samples were characterized by
437	increased BB emissions from residential sources, enhanced heterogeneous chemistry and weakened
438	photochemical reactions. But none of these factors was identified as the dominant driver for the
439	higher MAE ₃₆₅ at night. Instead, MAE ₃₆₅ exhibited a negative dependence on $R_{S/N}$, and the lower
440	$R_{S/N}$ and thus higher MAE ₃₆₅ at night were primarily attributed to increased emissions from heavy-
441	duty diesel trucks, which were not allowed for the main urban area during the day. In addition, the
442	wintertime AAE were higher at night but it remained difficult to unfold the underlying connection
443	between this diurnal pattern and the changes in BrC sources.
444	The spring campaign was characterized by frequent occurrences of agricultural fires, with more
445	pronounced diurnal variations of MAE_{365} (averaging 0.98 \pm 0.31 and 1.69 \pm 0.65 m^2/gC for the
446	daytime and nighttime samples, respectively). Unlike winter, the springtime MAE_{365} were mainly
447	influenced by open burning emissions, as suggested by the positive dependence of $\ensuremath{MAE_{365}}$ on
448	LG/OC and the lack of correlation between MAE ₃₆₅ and $R_{S/N}$. The higher nighttime LG/OC
449	indicated that the farmers preferred burning the crop residues at night, presumably because
450	agricultural fires were nominally prohibited by the local government. In addition, BrC exhibited
451	distinct light absorption spectra during agricultural fire episodes, as indicated by the non-linear
452	relationship between $ln(ATN_{\lambda})^{*}$ on $ln(\lambda).$ The non-linearity was mainly caused by chromophores
453	with absorption peak at ~365 nm, which became more significant with increasing BB influence. A
454	candidate for the compounds at play was C ₇ H ₇ NO ₄ , based on a synthesis of absorption spectra
455	measured for various BrC chromophores and molecular measurement results for BB emissions. The

- 456 presence of such chromophores, i.e., the distinct absorption peak at ~365 nm, prohibited a proper
- 457 determination of AAE for the spring samples impacted by agricultural fires.
- 458 Data availability. Data described in this manuscript can be accessed at
- 459 https://doi.org/10.5281/zenodo.7590785 (Cheng, 2023).
- 460 Author contributions. YC and JL designed the study and prepared the paper with inputs from all
- 461 the co-authors. XC, YZ and QY carried out the experiments. QZ and KH validated the results and
- 462 supervised the study.
- 463 Competing interests. Author Qiang Zhang is a member of the editorial board of Atmospheric
- 464 Chemistry and Physics. The peer-review process was guided by an independent editor, and the
- 465 authors have also no other competing interests to declare.
- 466 Acknowledgements. The authors thank Zhen-yu Du at National Research Center for Environmental
- 467 Analysis and Measurement, and Lin-lin Liang at Chinese Academy of Meteorological Sciences for
- their help in sample analysis.
- 469 Financial support. This research has been supported by the National Natural Science Foundation
- 470 of China (42222706), the Natural Science Foundation of Heilongjiang Province (LH2020D011),
- 471 Fundamental Research Funds for the Central Universities, and Heilongjiang Touyan Team.
- 472 References
- 473 Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski,
- 474 S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of
- 475 trace gases and particles emitted by a chaparral fire in California, *Atmos. Chem. Phys.*, 12,
- 476 1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.
- 477 Brege, M. A., China, S., Schum, S., Zelenyuk, A., and Mazzoleni, L. R.: Extreme molecular
- 478 complexity resulting in a continuum of carbonaceous species in biomass burning tar balls from
- 479 wildfire smoke, *ACS Earth Space Chem.*, 5, 2729–2739,
- 480 https://doi.org/10.1021/acsearthspacechem.1c00141, 2015.

481 482	Brown, H., Liu, X. H., Feng, Y., Jiang, Y. Q., Wu, M. X., Lu, Z., Wu, C. L., Murphy, S., and Pokhrel, R.: Radiative effect and climate impacts of brown carbon with the Community Atmosphere
483	Model (CAM5), Atmos. Chem. Phys., 18, 17745-17768, https://doi.org/10.5194/acp-18-
484	17745-2018, 2018.
485	Cappa, C. D., Lim, C. Y., Hagan, D. H., Coggon, M., Koss, A., Sekimoto, K., de Gouw, J., Onasch,
486	T. B., Warneke, C., and Kroll, J. H.: Biomass-burning-derived particles from a wide variety of
487	fuels - Part 2: effects of photochemical aging on particle optical and chemical properties,
488	Atmos. Chem. Phys., 20, 8511-8532, https://doi.org/10.5194/acp-20-8511-2020, 2020.
489	Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F., Yang, X. P., Liu,
490	Y. H., Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M., Zeng, L. M., and Zhang, Y. H.: Field
491	determination of nitrate formation pathway in winter Beijing, Environ. Sci. Technol., 54,
492	9243-9253, https://doi.org/10.1021/acs.est.0c00972, 2020.
493	Chen, Y., and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos.
494	Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
495	Cheng, Y.: Data for Measurement report: Diurnal variations of brown carbon during two distinct
496	seasons in a megacity in Northeast China [data set], https://doi.org/10.5281/zenodo.7590785,
497	2023.
498	Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng, M., and Weber, R. J.: The
499	characteristics of brown carbon aerosol during winter in Beijing, Atmos. Environ., 127, 355-
500	364, https://doi.org/10.1016/j.atmosenv.2015.12.035, 2016.
501	Cheng, Y., Cao, X. B., Liu, J. M., Yu, Q. Q., Wang, P., Yan, C. Q., Du, Z. Y., Liang, L. L., Zhang,
502	Q., and He, K. B.: Primary nature of brown carbon absorption in a frigid atmosphere with
503	strong haze chemistry, Environ. Res., 204, 112324,
504	https://doi.org/10.1016/j.envres.2021.112324, 2022a.
505	Cheng, Y., Cao, X. B., Liu, J. M., Yu, Q. Q., Zhong, Y. J., Geng, G. N., Zhang, Q., and He, K. B.:
506	New open burning policy reshaped the aerosol characteristics of agricultural fire episodes in
507	Northeast China, Sci. Total Environ., 810, 152272,
508	https://doi.org/10.1016/j.scitotenv.2021.152272, 2022b.
509	Chu, B. W., Zhang, S. P., Liu, J., Ma, Q. X., and He, H.: Significant concurrent decrease in PM _{2.5}
510	and NO ₂ concentrations in China during COVID-19 epidemic, J. Environ. Sci., 99, 346–353,
511	https://doi.org/10.1016/j.jes.2020.06.031, 2021.
512	Dallmann, T. R., DeMartini, S. J., Kirchstetter, T. W., Herndon, S. C., Onasch, T. B., Wood, E. C.,
513	and Harley, R. A.: On-road measurement of gas and particle phase pollutant emission factors

514 515	for individual heavy-duty diesel trucks, <i>Environ. Sci. Technol.</i> , 46, 8511–8518, https://doi.org/10.1021/es301936c, 2012.
516	Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K., Satheesh, S., Asmi, E., Kesti,
517	J., Backman, J., Salam, A., Bisht, D. S., Tiwari, S., Hameed, Z., and Gustafsson, Ö.:
518	Photochemical degradation affects the light absorption of water-soluble brown carbon in the
519	South Asian outflow, Sci. Adv., 5, eaau8066, https://doi.org/10.1126/sciadv.aau8066, 2019.
520	Du, W., Shen, G. F., Chen, Y. C., Zhu, X., Zhuo, S. J., Zhong, Q. R., Qi, M., Xue, C. Y., Liu, G. Q.,
521	Zeng, E., Xing, B. S., and Tao, S.: Comparison of air pollutant emissions and household air
522	quality in rural homes using improved wood and coal stoves, Atmos. Environ., 166, 215-223,
523	https://doi.org/10.1016/j.atmosenv.2017.07.029, 2017.
524	Engling, G., Carrico, C. M., Kreidenweis, S. M., Collett Jr., J. L., Day, D. E., Malm, W. C., Lincoln,
525	L., Hao, W. M., Iinuma, Y., and Herrmann, H.: Determination of levoglucosan in biomass
526	combustion aerosol by high-performance anion-exchange chromatography with pulsed
527	amperometric detection, Atmos. Environ., 40, S299-S311,
528	https://doi.org/10.1016/j.atmosenv.2005.12.069, 2006.
529	Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M.: Water-soluble
530	organic components in aerosols associated with savanna fires in southern Africa: identification,
531	evolution, and distribution, J. Geophys. Res., 108, D13, 8491,
532	https://doi.org/10.1029/2002JD002324, 2003.
533	Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-soluble
534	organic aerosol material and the light-absorption characteristics of aqueous extracts measured
535	over the Southeastern United States, Atmos. Chem. Phys., 10, 5965-5977,
536	https://doi.org/10.5194/acp-10-5965-2010, 2010.
537	Huang, R. J., Yang, L., Shen, J.C., Yuan, W., Gong, Y. Q., Guo, J., Cao, W. J., Duan, J., Ni, H. Y.,
538	Zhu, C. S., Dai, W. T., Li, Y. J., Chen, Y., Chen, Q., Wu, Y. F., Zhang, R. J., Dusek, U., and
539	O'Dowd, C.: Water-Insoluble organics dominate brown carbon in wintertime urban aerosol of
540	China: chemical characteristics and optical properties, <i>Environ. Sci. Technol.</i> , 54, 7836–7847,
541	https://doi.org/10.1021/acs.est.0c01149, 2020.
542	Huang, R. J., Yang, L., Shen, J. C., Yuan, W., Gong, Y. Q., Ni, H. Y., Duan, J., Yan, J., Huang, H.
543	B., You, Q. H., and Li, Y. J.: Chromophoric fingerprinting of brown carbon from residential
544	biomass burning, Environ. Sci. Technol. Lett., 9, 102-111,
545	https://doi.org/10.1021/acs.estlett.1c00837, 2022.
546	Huo, Y. Q., Guo, Z. H., Li, Q., Wu, D., Ding, X., Liu, A. L., Huang, D., Qiu, G. K., Wu, M. M.,
547	Zhao, Z. J., Sun, H., Song, W. H., Li, X., Chen, Y. J., Wu, T. C., and Chen, J. M.: Chemical

580

548	fingerprinting of HULIS in particulate matters emitted from residential coal and biomass
549	combustion, Environ. Sci. Technol., 55, 3593-3603,
550	https://doi.org/10.1021/acs.est.0c08518, 2021.
551	Iinuma, Y., Böge, O., Gräfe, R., and Herrmann, H.: Methyl-nitrocatechols: atmospheric tracer
552	compounds for biomass burning secondary organic aerosols, Environ. Sci. Technol., 44, 8453-
553	8459, https://doi.org/10.1021/es102938a, 2010.
554	Jiang, H. X., Li, J., Sun, R., Tian, C. G., Tang, J., Jiang, B., Liao, Y. H., Chen, C. E., and Zhang, G.:
555	Molecular dynamics and light absorption properties of atmospheric dissolved organic matter,
556	Environ. Sci. Technol., 55, 10268–10279, https://doi.org/10.1021/acs.est.1c01770, 2021.
557	Kumar, N. K., Corbin, J. C., Bruns, E. A., Massabó, D., Slowik, J. G., Drinovec, L., Močnik, G.,
558	Prati, P., Vlachou, A., Baltensperger, U., Gysel, M., El-Haddad, I., and Prévôt, A. S. H.:
559	Production of particulate brown carbon during atmospheric aging of residential wood-burning
560	emissions, Atmos. Chem. Phys., 18, 17843-17861, https://doi.org/10.5194/acp-18-17843-
561	2018, 2018.
562	Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M., and Schwarz, J. P.:
563	Brown carbon and internal mixing in biomass burning particles, Proc. Natl. Acad. Sci. USA,
564	109, 14802–14807, https://doi.org/10.1073/pnas.1206575109, 2012.
565	Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chem. Rev.,
566	115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
567	Li, M., Liu, H., Geng, G. N., Hong, C. P., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H. Y., Man,
568	H. Y., Zhang, Q., and He, K. B.: Anthropogenic emission inventories in China: a review, Natl.
569	Sci. Rev., 4, 834-866, https://doi.org/10.1093/nsr/nwx150, 2017.
570	Li, X., Wang, Y. J., Hu, M., Tan, T. Y., Li, M. R., Wu, Z. J., Chen, S. Y., and Tang, X. Y.:
571	Characterizing chemical composition and light absorption of nitroaromatic compounds in the
572	winter of Beijing, Atmos. Environ., 237, 117712,
573	https://doi.org/10.1016/j.atmosenv.2020.117712, 2019.
574	Li, Y. C., Liu, J., Han, H., Zhao, T. L., Zhang, X., Zhuang, B. L., Wang, T. J., Chen, H. M., Wu, Y.,
575	and Li, M. M.: Collective impacts of biomass burning and synoptic weather on surface $PM_{2.5}$
576	and CO in Northeast China, Atmos. Environ., 213, 64-80,
577	https://doi.org/10.1016/j.atmosenv.2019.05.062, 2019.
578	Li, Y. R., Tan, Z. Q., Ye, C. X., Wang, J. X., Wang, Y. W., Zhu, Y., Liang, P. F., Chen, X., Fang, Y.
579	H., Han, Y. Q., Wang, Q., He, D., Wang, Y., and Zhu, T.: Using wavelet transform to analyse

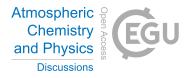
on-road mobile measurements of air pollutants: a case study to evaluate vehicle emission

581 582	control policies during the 2014 APEC summit, Atmos. Chem. Phys., 19, 13841–13857, https://doi.org/10.5194/acp-19-13841-2019, 2019.
583	Lian, X. B., Huang, J. P., Huang, R. J., Liu, C. W., Wang, L. N., and Zhang, T. H.: Impact of city
584	lockdown on the air quality of COVID-19-hit of Wuhan city, <i>Sci. Total Environ.</i> , 742, 140556,
585	https://doi.org/10.1016/j.scitotenv.2020.140556, 2020.
586	Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Molecular
587	characterization of brown carbon in biomass burning aerosol particles, <i>Environ. Sci. Technol.</i> ,
588	50, 11815–11824, https://doi.org/10.1021/acs.est.6b03024, 2016.
589	Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular
590	chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event,
591	<i>Environ. Sci. Technol.</i> , 51, 11561–11570, https://doi.org/10.1021/acs.est.7b02276, 2017.
592	Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Comprehensive molecular
593	characterization of atmospheric brown carbon by high resolution mass spectrometry with
594	electrospray and atmospheric pressure photoionization, <i>Anal. Chem.</i> , 90, 12493–12502,
595	https://doi.org/10.1021/acs.analchem.8b02177, 2018.
596	Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing brown carbon chromophores
597	produced in reactions of methylglyoxal with ammonium sulfate, <i>Environ. Sci. Technol.</i> , 49,
598	14257–14266, https://doi.org/10.1021/acs.est.5b03608, 2015.
599	Liu, T. Y., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase oxidation of sulfur dioxide in aerosol
600	particles: implications for sulfate formation in polluted environments, <i>Environ. Sci. Technol.</i> ,
601	8, 4227–4242, https://doi.org/10.1021/acs.est.0c06496, 2021.
602	 Liu, X. X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez, J. L., Campuzano-Jost, P.,
603	Beyersdorf, A. J., Blake, D. R., Choi, Y., St Clair, J. M., Crounse, J. D., Day, D. A., Diskin, G.
604	S., Fried, A., Hall, S. R., Hanisco, T. F., King, L. E., Meinardi, S., Mikoviny, T., Palm, B. B.,
605	Peischl, J., Perring, A. E., Pollack, I. B., Ryerson, T. B., Sachse, G., Schwarz, J. P., Simpson, I.
606	J., Tanner, D. J., Thornhill, K. L., Ullmann, K., Weber, R. J., Wennberg, P. O., Wisthaler, A.,
607	Wolfe, G. M., and Ziemba, L. D.: Agricultural fires in the southeastern U.S. during SEAC ⁴ RS:
608	emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic
609	aerosol, <i>J. Geophys. Res. Atmos.</i> , 121, 7383–7414, https://doi.org/10.1002/2016JD025040,
610	2016.
611	McClure, C. D., Lim, C. Y., Hagan, D. H., Kroll, J. H., and Cappa, C. D.: Biomass-burning-derived
612	particles from a wide variety of fuels – Part 1: properties of primary particles, <i>Atmos. Chem.</i>
613	<i>Phys.</i> , 20, 1531–1547, https://doi.org/10.5194/acp-20-1531-2020, 2020.

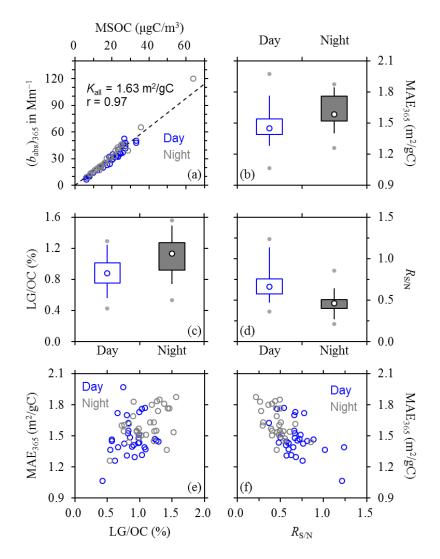
614	McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett Jr., J. L.,
615	Hao, W. M., Holden, A. S., Kirchstetter, T. W., Malm, W. C., Moosmüller, H., Sullivan, A. P.,
616	and Wold, C. E.: Emissions of trace gases and aerosols during the open combustion of biomass
617	in the laboratory, J. Geophys. Res., 114, D19210, https://doi.org/10.1029/2009JD011836, 2009.
618	Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Pr év ât, A. S. H., Xu, L., Ng, N. L., Herndon, S. C.,
619	Williams, L. R., Franklin, J. P., Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken, A.
620	C., Gorkowski, K. J., Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of nitrated
621	phenols to wood burning brown carbon light absorption in Detling, United Kingdom during
622	winter time, <i>Environ. Sci. Technol.</i> , 47, 6316–6324, https://doi.org/10.1021/es400683v, 2013.
623	Ni, H. Y., Huang, R. J., Pieber, S. M., Corbin, J. C., Stefenelli, G., Pospisilova, V., Klein, F., Gysel-
624	Beer, M., Yang, L., Baltensperger, U., El Haddad, I., Slowik, J. G., Cao, J. J., Pr év $\hat{\alpha},$ A. S. H.,
625	and Dusek, U.: Brown carbon in primary and aged coal combustion emission, Environ. Sci.
626	Technol., 55, 5701–5710, https://doi.org/10.1021/acs.est.0c08084, 2021.
627	Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T., Stone, E. A., Stockwell,
628	C. E., Yokelson, R. J., and Murphy, S. M.: Parameterization of single-scattering albedo (SSA)
629	and absorption Ångsträm exponent (AAE) with EC/OC for aerosol emissions from biomass
630	burning, Atmos. Chem. Phys., 16, 9549-9561, https://doi.org/10.5194/acp-16-9549-2016,
631	2016.
632	Saleh, R.: From measurements to models: toward accurate representation of brown carbon in climate
633	calculations, Curr. Pollut. Rep., 6, 90–104, https://doi.org/10.1007/s40726-020-00139-3, 2020.
634	Salvador, C. M. G., Tang, R. Z., Priestley, M., Li, L. J., Tsiligiannis, E., Le Breton, M., Zhu, W. F.,
635	Zeng, L. M., Wang, H., Yu, Y., Hu, M., Guo, S., and Hallquist, M.: Ambient nitro-aromatic
636	compounds - biomass burning versus secondary formation in rural China, Atmos. Chem. Phys.,
637	21, 1389–1406, https://doi.org/10.5194/acp-21-1389-2021, 2021.
638	Sand, M., Samset, B. H., Myhre, G., Gliß, J., Bauer, S. E., Bian, H. S., Chin, M., Checa-Garcia, R.,
639	Ginoux, P., Kipling, Z., Kirkev åg, A., Kokkola, H., Le Sager, P., Lund, M. T., Matsui, H., van
640	Noije, T., Olivi é, D. J. L., Remy, S., Schulz, M., Stier, P., Stjern, C. W., Takemura, T., Tsigaridis,
641	K., Tsyro, S. G., and Watson-Parris, D.: Aerosol absorption in global models from AeroCom
642	phase III, Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021,
643	2021.
644	Shen, X. B., Hao, J. T., Kong, L., Shi, Y., Cao, X. Y., Shi, J. C., Yao, Z. L., Li, X., Wu, B. B., Xu, Y.
645	M., and He, K. B.: Variation characteristics of fine particulate matter and its components in
646	diesel vehicle emission plumes, J. Environ. Sci., 107, 138-149,

647 https://doi.org/10.1016/j.jes.2021.01.034, 2021.

648	Su, H., Cheng, Y. F., and Pöschl, U.: New multiphase chemical processes influencing atmospheric
649	aerosols, air quality, and climate in the Anthropocene, Acc. Chem. Res., 53, 2034–2043,
650	https://doi.org/10.1021/acs.accounts.0c00246, 2020.
651	Tabazadeh, A., Djikaev, Y. S., and Reiss, H.: Surface crystallization of supercooled water in clouds,
652	Proc. Natl. Acad. Sci. USA, 99, 15873–15878, https://doi.org/10.1073/pnas.252640699, 2002.
653	Wang, Q. Q., Zhou, Y. Y., Ma, N., Zhu, Y., Zhao, X. C., Zhu, S. W., Tao, J. C., Hong, J., Wu, W. J.,
654	Cheng, Y. F., and Su, H.: Review of brown carbon aerosols in China: pollution level, optical
655	properties, and emissions, J. Geophys. Res. Atmos., 127, e2021JD035473,
656	https://doi.org/10.1029/2021JD035473, 2022.
657	Wang, Y. S., Li, W. J., Gao, W. K., Liu, Z. R., Tian, S. L., Shen, R. R., Ji, D. S., Wang, S., Wang, L.
658	L., Tang, G. Q., Song, T., Cheng, M. T., Wang, G. H., Gong, Z. Y., Hao, J. M., and Zhang, Y.
659	H.: Trends in particulate matter and its chemical compositions in China from 2013-2017, Sci.
660	China Earth Sci., 62, 1857–1871, https://doi.org/10.1007/s11430-018-9373-1, 2019.
661	Washenfelder, R. A., Azzarello, L., Ball, K., Brown, S. S., Decker, Z. C. J., Franchin, A.,
662	Fredrickson, C. D., Hayden, K., Holmes, C. D., Middlebrook, A. M., Palm, B. B., Pierce, R.
663	B., Price, D. J., Roberts, J. M., Robinson, M. A., Thornton, J. A., Womack, C. C., and Young,
664	C. J.: Complexity in the evolution, composition, and spectroscopy of brown carbon in aircraft
665	measurements of wildfire plumes, Geophys. Res. Lett., 49, e2022GL098951,
666	https://doi.org/10.1029/2022GL098951, 2022.
667	Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., and Hatcher, P. G.: Technical Note:
668	Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh
669	resolution electrospray ionization Fourier transform ion cyclotron resonance mass
670	spectrometry, Atmos. Chem. Phys., 8, 5099-5111, https://doi.org/10.5194/acp-8-5099-2008,
671	2008.
672	Wu, J., Kong, S. F., Yan, Y. Y., Yao, L. Q., Yan, Q., Liu, D. T., Shen, G. F., Zhang, X. Y., and Qi, S.
673	H.: Neglected biomass burning emissions of air pollutants in China-views from the corncob
674	burning test, emission estimation, and simulations, Atmos. Environ., 278, 119082,
675	https://doi.org/10.1016/j.atmosenv.2022.119082, 2022.
676	Xie, M. J., Chen, X., Hays, M. D., and Holder, A. L.: Composition and light absorption of N-
677	containing aromatic compounds in organic aerosols from laboratory biomass burning, Atmos.
678	Chem. Phys., 19, 2899–2915, https://doi.org/10.5194/acp-19-2899-2019, 2019.
679	Xie, M. J., Zhao, Z. Z., Holder, A. L., Hays, M. D., Chen, X., Shen, G. F., Jetter, J. J., Champion,
680	W. M., and Wang, Q. G.: Chemical composition, structures, and light absorption of N-
681	containing aromatic compounds emitted from burning wood and charcoal in household



682 683	cookstoves, Atmos. Chem. Phys., 20, 14077–14090, https://doi.org/10.5194/acp-20-14077-2020, 2020.
684	Xu, J. Z., Hettiyadura, A. P. S., Liu, Y. M., Zhang, X. H., Kang, S. C., and Laskin, A.: Atmospheric
685	brown carbon on the Tibetan Plateau: regional differences in chemical composition and light
686	absorption properties, Environ. Sci. Technol. Lett., 9, 219-225,
687	https://doi.org/10.1021/acs.estlett.2c00016, 2022.
688	Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to
689	black carbon, brown carbon, and dust in China - Interpretations of atmospheric measurements
690	during EAST-AIRE, Atmos. Chem. Phys., 9, 2035–2050, https://doi.org/10.5194/acp-9-2035-
691	2009, 2009.
692	Yttri, K. E., Schnelle-Kreis, J., Maenhaut, W., Abbaszade, G., Alves, C., Bjerke, A., Bonnier, N.,
693	Bossi, R., Claeys, M., Dye, C., Evtyugina, M., Garc á-Gacio, D., Hillamo, R., Hoffer, A., Hyder,
694	M., Iinuma, Y., Jaffrezo, J. L., Kasper-Giebl, A., Kiss, G., Lopez-Mahia, P. L., Pio, C., Piot, C.,
695	Ramirez-Santa-Cruz, C., Sciare, J., Teinil ä, K., Vermeylen, R., Vicente, A., and Zimmermann,
696	R.: An intercomparison study of analytical methods used for quantification of levoglucosan in
697	ambient aerosol filter samples, Atmos. Meas. Tech., 8, 125-147, https://doi.org/10.5194/amt-
698	8-125-2015, 2015.
699	Yuan, Q., Qi, B., Hu, D. Y., Wang, J. J., Zhang, J., Yang, H. Q., Zhang, S. S., Liu, L., Xu, L., and Li,
700	W. J.: Spatiotemporal variations and reduction of air pollutants during the COVID-19
701	pandemic in a megacity of Yangtze River Delta in China, Sci. Total Environ., 751, 141820,
702	https://doi.org/10.1016/j.scitotenv.2020.141820, 2021.
703	Zeng, L. H., Dibb, J., Scheuer, E., Katich, J. M., Schwarz, J. P., Bourgeois, I., Peischl, J., Ryerson,
704	T., Warneke, C., Perring, A. E., Diskin, G. S., DiGangi, J. P., Nowak, J. B., Moore, R. H.,
705	Wiggins, E. B., Pagonis, D., Guo, H. Y., Campuzano-Jost, P., Jimenez, J. L., Xu, L., and Weber,
706	R. J.: Characteristics and evolution of brown carbon in western United States wildfires, Atmos.
707	Chem. Phys., 22, 8009-8036, https://doi.org/10.5194/acp-22-8009-2022, 2022.
708	Zeng, L. H., Zhang, A. X., Wang, Y. H., Wagner, N. L., Katich, J. M., Schwarz, J. P., Schill, G. P.,
709	Brock, C., Froyd, K. D., Murphy, D. M., Williamson, C. J., Kupc, A., Scheuer, E., Dibb, J., and
710	Weber, R. J.: Global measurements of brown carbon and estimated direct radiative effects,
711	Geophys. Res. Lett., 47, e2020GL088747, https://doi.org/10.1029/2020GL088747, 2020.
712	Zeng, Y. L., Ning, Y. L., Shen, Z. X., Zhang, L. M., Zhang, T., Lei, Y. L., Zhang, Q., Li, G. H., Xu,
713	H. M., Ho, S. S. H., and Cao, J. J.: The roles of N, S, and O in molecular absorption features
714	of brown carbon in PM _{2.5} in a typical semi-arid megacity in Northwestern China, J. Geophys.
715	Res. Atmos., 126, e2021JD034791, https://doi.org/10.1029/2021JD034791, 2021.



716	Zhang, J., Smith, K. R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M. A. K., Rasmussen, R.
717	A., and Thorneloe, S. A.: Greenhouse gases and other airborne pollutants from household
718	stoves in China: a database for emission factors, Atmos. Environ., 34, 4537-4549,
719	https://doi.org/10.1016/S1352-2310(99)00450-1, 2000.
720	
720	Zhang, Y. L., Wang, X. M., Li, G. H., Yang, W. Q., Huang, Z. H., Zhang, Z., Huang, X. Y., Deng,
721	W., Liu, T. Y., Huang, Z. Z., and Zhang, Z. Y.: Emission factors of fine particles, carbonaceous
722	aerosols and traces gases from road vehicles: recent tests in an urban tunnel in the Pearl River
723	Delta, China, Atmos. Environ., 122, 876-884, https://doi.org/10.1016/j.atmosenv.2015.08.024,
724	2015.

725

726 Figure 1. (a) Dependence of (b_{abs})₃₆₅ on MSOC, (b-d) diurnal variations of MAE₃₆₅, LG/OC (on a 727 basis of carbon mass) and R_{S/N}, and (e-f) dependences of MAE₃₆₅ on LG/OC or R_{S/N} during winter. 728 In (a), the dashed line indicates linear regression result based on all the winter samples, with $K_{\rm all}$ as 729 slope (intercept was set as zero). In (b-d), lower and upper box bounds indicate the 25th and 75th 730 percentiles, the whiskers below and above the box indicate the 5th and 95th percentiles, the solid circles below and above the box indicate the minimum and maximum, and the open circle within 731 732 the box marks the median (the same hereinafter). Comparison of (e) and (f) suggests that the 733 wintertime MAE₃₆₅ was more strongly influenced by R_{S/N} compared to LG/OC. The dependence shown in (f) could be approximated by the following function for all the winter samples (r = 0.61): 734 MAE₃₆₅ = $(-0.51 \pm 0.09) \times R_{S/N} + (1.84 \pm 0.05)$. 735

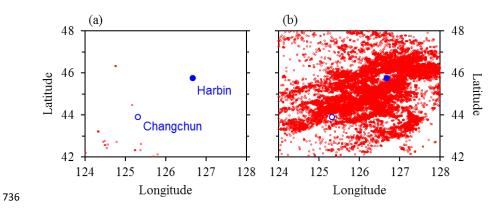
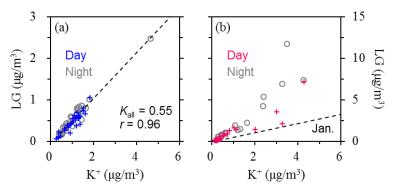
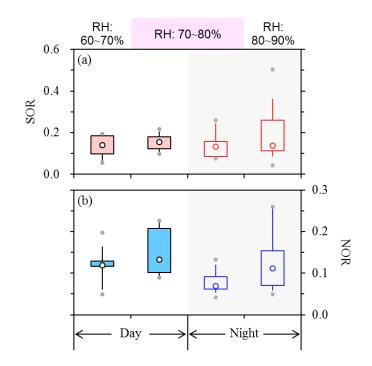



Figure 2. Active fires (red circles) detected during the (a) winter and (b) spring measurement
periods around Harbin. The location of another central city of the HC metropolitan area, Changchun,
is also shown. The fire data were based on the joint NASA/NOAA Suomi National Polar-orbiting
Partnership (S-NPP) satellite, and were downloaded from the Fire Information for Resource
Management System (FIRMS; https://firms.modaps.eosdis.nasa.gov/, last access: 1 January, 2023).

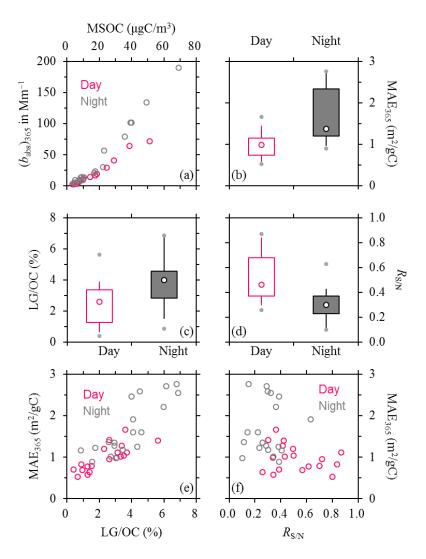


742

Figure 3. Dependences of levoglucosan on K^+ during (a) winter and (b) spring. In (a), the dashed line indicates linear regression result based on all the winter samples, with K_{all} as slope. The regression line of winter campaign is also shown in (b) for comparison to highlight the increased and variable LG/K⁺ ratios in spring. The relatively low and constant LG/K⁺ in winter were attributed to residential burning of crop residues, a routine activity occurring every day in rural areas for cooking and heating. The higher LG/K⁺ in spring were associated with agricultural fires, as supported by the intensive fire hotspots detected.

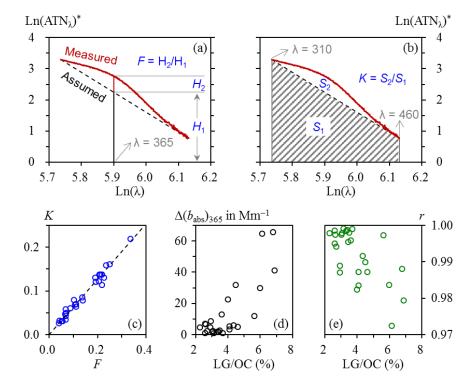
750

751 Figure 4. Diurnal variations of (a) SOR and (b) NOR in winter, with results from different RH


ranges shown separately. Daytime and nighttime samples had the same RH range of 70-80%,

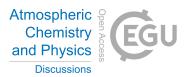
vhereas low RH levels of 60–70% and high RH levels of 80–90% occurred only during the day and

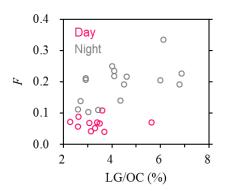
at night, respectively.



755

Figure 5. The same as Figure 1 but for spring. MAE₃₆₅ showed more pronounced diurnal variations in spring than winter, although the daytime vs. nighttime discrepancies in $R_{S/N}$ were comparable between the two seasons. Comparison of (e) and (f) suggests that unlike winter, the springtime MAE₃₆₅ was more strongly influenced by LG/OC than by $R_{S/N}$. The dependence shown in (e) could be approximated by the following function for all the spring samples (r = 0.84): MAE₃₆₅ = (30.48 ± 3.28) × LG/OC + (0.39 ± 0.12).





762

763 **Figure 6.** Nonlinearity of $\ln(ATN_{\lambda})^*$ on $\ln(\lambda)$ during agricultural fire episodes in spring: (a-b) 764 illustrations of the determination of F and K, (c) comparison of K and F, and (d-e) dependences of $\Delta(b_{abs})_{365}$ and r on LG/OC. In (a) and (b), the measured spectrum correspond to the nighttime sample 765 collected on April 21, 2021, which had an LG/OC of 6.87%; the assumed spectrum was generated 766 by drawing a line between the two points with x values of $\ln(310)$ and $\ln(460)$; H₁ indicates 767 $\ln(\text{ATN}_{365})^*$ of the assumed spectrum, while H_2 indicates the difference in $\ln(\text{ATN}_{365})^*$ between the 768 769 two spectra; S_1 indicates the area enclosed by the assumed spectrum and the x-axis, while S_2 indicates the area enclosed between the two spectra. In (c), the dashed line indicates linear regression 770 771 result (intercept was set as zero) and the corresponding r value was 0.99. In (e), r was derived from 772 linear regression of $\ln(ATN_{\lambda})^*$ on $\ln(\lambda)$. Although the *r* values seemed reasonable, the AAE results 773 should be interpreted with caution given the apparent absorption peak at ~365 nm.

774

Figure 7. Dependence of *F*, a measure of the significance of the \sim 365 nm absorption peak, on LG/OC during agricultural fire episodes in spring. For a given LG/OC range, *F* decreased substantially during the day, likely due to photo-blanching of chromophores associated with the \sim 365 nm peak. The same conclusion could be reached based on *K*, another indicator for the significance of the \sim 365 nm peak.