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S1 Box model data
S1.1 BOXMOX input files

Table S1: Initial conditions in the box and background air

Species Mixing ratio (ppm)
M 1.00E+06
N 7.80E+05
0)) 2.10E+05

HO 1.00E+04
CH,4 1.80E+00
CO 1.00E-01
H, 5.00E-01
O3 3.00E-02
H>0» 1.00E-03
NO 1.00E-06
NO> 1.00E-05
HNO3 5.00E-04
DMS 2.00E-04
SO, 2.00E-05




25  Table S2: Diurnal profile of temperature and boundary layer height

Time (h) Temperature (K) Boundary Layer Height (m)

0 289.5359 1300
1 289.1363 1300
2 289.0000 1350
3 289.1363 1400
4 289.5359 1450
5 290.1716 1500
6 291.0000 1550
7 291.9647 1450
8 293.0000 1400
9 294.0353 1350
10 295.0000 1300
11 295.8284 1250
12 296.4641 1200
13 296.8637 1200
14 297.0000 1200
15 296.8637 1200
16 296.4641 1150
17 295.8284 1150
18 295.0000 1100
19 294.0353 1200
20 293.0000 1300
21 291.9647 1400
22 291.0000 1400
23 290.1716 1350
24 289.5359 1300
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29

30  S1.2 Reduction of the HPMTF pathway

31

32  HPMTF can have more side reactions than are described in the main paper. Originally, a range of possible

33  reactions were considered based on the literature and reactions that similar molecules undergo (Figure S1, Table
34  S3). Reactions that were assessed include photolysis reactions and aqueous loss of HPMTF as well as reactions
35  ofthe intermediate formed after the first isomerization step and the oxidation of this by HO, and NO, as

36  described by Veres et al. (2020). In the SI, this scheme is referred to as CS2-HPMTF-compl.

37
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To reduce computational time, as few reactions as possible should be included in a mechanism. At the same
time, enough reactions need to be included so that the mechanism can faithfully reproduce the time evolution of
the species it models. The reactions which are removed from the mechanism should not play a significant role
under the majority of atmospheric conditions. In this section, it is tested whether some of the reactions proposed
can be removed without changing the concentration of key species. In this case the key species chosen were
HPMTF and SO; (i.e. the mechanism was optimized to these species) because observational measurements exist
for those species.

The BOXMOX runs were set up as described in Section 2.1.1 of the main paper. In the sensitivity runs,
temperature, aerosol surface area, and O3 and NO concentrations are varied to represent a diverse set of possible
atmospheric conditions (Table S4). Figure S2 shows how the mean values of SO2 and HPMTF concentration
respond to the changing conditions in the CS2-HPMTF-compl scheme. Similar trends can be observed with
minimum and maximum concentrations, although they are not explicitly shown here. When reactions are
removed from the scheme, the response of SO2 and HPMTF concentration to changing conditions should be
maintained. The reduced CS2-HPMTF scheme will be referred to as CS2-HPMTF-red.
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2.24D+11*EXP(-9800/TEMP)
*(1.03D+8/(TEMP*3)))

6.09D+11"EXP(-9500.0/TEMP)
*(1.1D+8/(TEMPA3))

MCM (as for CHySCH,00):
4.9D-12"EXP(260/TEMP)

O S~ OOH. NO,

MCM (as for CH,SCH,0):
+ 3SCH;!
OH 1.0D+6

Aldehyde-
Photolysis

Ll
S0
S0, + HO, + CO MTMP
Veres et al.:
+NO, | +03 Isom. 1
MCM (as for CH;SO): MCM (as for CH,SO):
1.2D-12 4.0D-13
.
. 3\70 MCM (as for CH;SCH,00): Oo\/s\/OOH
- 2.91D-13"EXP
© (1300/TEMP)*0.387 OOCH,SCH,00H
+HO,
+NO, +0;3
MCM (as for CH,S): | MCM (as for CH,S): HOO S OOH Isom. 2 Veres et al.:
6.00D11* 1.15D12* :
EXP(240/TEMP) EXP(430/TEMP)
. + OH
HCHO + 8\90 MCM (as for CHJSC?B?S:‘:
? \
MCM: 1,0D+6 .
Hydroperoxide-
. - Photolysis HOO__ S. 20
OH + O S0 =
Ja1 HPMTF
Bertram et al.:
Bertram et al: 1to5D-11 +OH
y=16D3
Y
HOOVS\?O
.
+H,0
HPMTF_aq
Wuetal.:
1.6D+7*EXP(-1468.6/TEMP)
Y

OH + HCHO + OCS

- HCHO
| MCM (as for CH,S):
1.20D-16*EXP
-Co o (1580/TEMP) 02
» HOO S — .
Wu etal.: N~ S~ HOO\/S\O,O
9.2D9"EXP(-505.4/TEMP) MCM (as for CH;SOO):
3.50D+10°EXP(-3560/TEMP)
+NO, [+0O3
MCM (as for CH,;S): MCM (as for CH,S): MCM (as for
6.00D11*EXP(240/TEMP) | 1.15D12*EXP(430/TEMP) CH,S00):
5.60D+16"EXP
Y (-10870/TEMP)
L
HOO__ SO
+NO, |+ 053 OH + HCHO + SO,

MCM (as for CH;SO) MCM (as for CH;SO):
1.2D-12 4.0D-13

Y
OH + HCHO + S0,

Figure S1: Complete isomerization pathway of HPMTF that was considered before reducing the mechanism.

Table S3: The complete isomerization pathway, referred to as CS2-HPMTF-compl.

No. Reaction

Rate (cm® molecule s™') Reference

sl  MTMP - OOCH,SCH,OOH
s2a OOCH,SCH,O0H - HPMTF + OH

s2b  OOCH,SCH,00H + HO2 - HOOCH,SCH,OOH

s3  HOOCH,SCH,OO0H + OH - HPMTF

see note” Veres et al. (2020)

See note” Veres et al. (2020)

1.13x107"% exp 30D Veres et al. (2020)

7.03x10™"! this work (like
CH,SCH>O0H in
MCMv3.3.1)
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66

s2¢
s4  OCH2SCH200H - HOOCH2S + HCHO

HPMTF + OH - HOOCH;S + H,O + CO
HPMTF + OH = OCS + OH + HCHO + H,O
HPMTF - HOOCH,S + HO, + CO

HPMTF - OCH,SCHO + OH

HPMTF - loss

HOOCH:S + O3 - HOOCH,SO

HOOCH:S + NO; - HOOCH,SO + NO
HOOCH:S + O2 - HOOCH,SOO
HOOCH,SO0 - HOOCH;S + O,
HOOCH,S0O0 = HCHO + OH + SO»
HOOCH,SO + O3 = HCHO + OH + SO»
HOOCH,SO + NO; = HCHO + OH + NO + SO,
s10  OCH2SCHO = HCHO + SCHO

slla SCHO + O; = OSCHO

sl1b SCHO + NO, = OSCHO + NO

sl2a OSCHO + O3 =SO; + HO, + CO

s12b OSCHO + NO; = SO; + HO, + CO + NO

s5a
s5b
s5¢
s5d
s5e
sba
s6b
s6bc
s7a
s7b
s8a
s8b

OOCH,SCH>00H + NO - OCH2SCH200H + NO> 4.90x10%¢

(260/T)

Veres et al. (2020)

1.0x10"¢ Veres et al. (2020)
1.0x10""' x 0.9 this work
1.0x10" x 0.1 this work

JI13 this work

J41 this work
gamma=0.1 this work
1.15x107"2 exp“*D Wu et al. (2015)
6.00x10"" e (240/T) Wu et al. (2015)

1.20x10° 16exp(1580/T) x [O2] this work (like CH3S)

3.50x10""0 exp330) this work (like CH;SOO)
5.60x10 "% ex ( 10870/T) this work (like CH;SOO)
4x107"3 Wu et al. (2015)
1.2x10" Wu et al. (2015)
1.0x10"¢ this work (like s4)
1.15x107"2 exp“*D this work (like s6a)
6.00x10"" e (240/ N this work (like s6b)
4x107" this work (like s8a)
1.2x10"" this work (like s8b)

a 2 24)( 10+11 p( -9800/T) exp(lA()}eS/(TXTXT))
6.09x10"!! ex ( 9500/T) o p(14168/(T><T><T))

Table S4: Conditions for sensitivity runs. For the NOx sensitivity run, NO, NO,, and HNO; were varied to
achieve NOx concentrations between 0.4 ppt and 4.4 ppb.

Sensitivity run  Temperature  NO (ppt) NO: (ppt) HNO:s (ppb) Os (ppb) Aerosol
X) surface area
(um?® cm™)
| | | | | | |
Temp 260 - 310 1 10 0.5 30 15
NOx 290 0.1-1000 1-10,000 0.01 - 100 30 15
O3 290 1 10 0.5 10 - 80 15
Aerosol 290 1 10 0.5 30 0-100
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Sensitivity to Temperature Sensitivity to NO concentration
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Figure S2: Sensitivity of mean SO2 (black) and HPMTF (grey) concentration with the complete mechanism to
the variation of temperature, NO and O3 concentration, and aerosol surface area.

Removal of aldehyde and hydroperoxide photolysis of HPMTF (reactions s5c¢ and s5d) has a negligible influence
on HPMTF and SO; concentration (Figure S3) under the conditions simulated in the BOXMOX runs. This result
is slightly at odds with the work of Khan et al. (2022), who found that photolysis was a dominant loss process.
But in line with the work of Novak et al. (2022). The relative difference in HPMTF between CS2-HPMTF-
compl and CS2-HPMTF-red is never higher than 6%. For SO, the maximum difference is 2% in total. In
comparison: if OH-oxidation of HPMTF had been removed, mean SO, concentration at high temperatures would
have dropped by more than 25% compared to CS2-HPMTF-red. Additionally, the large uncertainty regarding the
rate of OH-oxidation is expected to have a much higher influence than the (non)inclusion of the photolysis
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83  CS2-HPMTF mechanism.
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reactions. Therefore, reactions s5c and s5d and their plausible follow-up reactions are not included in the final

The effect of the removal of the two side reactions s2b and s3c¢ after the first isomerization step of MSP, can be
observed in Figure S4. At no point does SO, concentration change by more than 1% and HPMTF concentration
does not vary by more than 5%. The minor role of both pathways was expected, since the second isomerization
step s3 was calculated to be approximately a magnitude faster than the first isomerization step s2a (Wu et al.,
2015, Veres et al., 2020). These side reactions have therefore also been excluded from the final mechanism.
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Figure S3: Difference in sensitivity of mean SO, and HPMTF concentration after the removal of the
photooxidation reactions, compared to the complete mechanism.
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Figure S4: Difference in sensitivity of mean SO, and HPMTF concentration after the removal of the side
reactions after the first isomerization step during HPMTF formation, compared to the complete mechanism

S1.3 Other plots
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110  Figure S5: gas-phase concentrations as a function of time for different DMS gas-phase oxidation schemes used in
111 UKCA configurations (oxidation by OH and NOs3). Grey areas denote night- time, when no photolysis reactions
112 are taking place. Average NOx concentration is approximately 100 ppt, with an average temperature of 293 K
113 (range: 289 - 297 K).
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S1.4 DMS schemes

S1.4.1 StratTrop (Archibald et al. 2020)

DMS + OH = S02 : 1.20D-11*EXP(-260/TEMP) ;

DMS + OH = MSA + SO2 : 3.36224D-43*EXP(350/TEMP)*EXP(7460/TEMP)*M/(1+1.106D-
31*EXP(7460/TEMP)*M) ;

DMS + NO3 =S02 : 1.90D-13*EXP(500/TEMP) ;

DMS + O3P =S02 : 1.30D-11*EXP(410/TEMP) ;

S1.4.2 Wollesen de Jonge et al. (2021)

DMS + NO3 = CH3SCH202 + HNO3 : 1.9D-13*exp(520/TEMP) ;

DMS + OH = CH3SCH202 : 1.12D-11*exp(-250/TEMP) ;

DMS + OH = CH3SOHCHS3 : 9.5D-39*02*EXP(5270/TEMP)/(1+7.5D-29*O2*EXP(5610/TEMP)) ;
CH3SOHCH3 = HODMSO?2 : 8.5D-13*02 ;

CH3SOHCH3 = CH3SOH + CH302 : 5D+5;

CH3SOHCH3 = DMS + OH : (2.048D-14*02*exp(2674/TEMP)/(1+5.5D-31*02*exp(7640/TEMP)))/(TEMP) ;
CH3SOH + OH = CH3SO : 5D-11 ;

CH3SCH202 + HO2 = CH3SCH20OO0OH : KRO2HO2*0.387 ;

CH3SCH202 + NO = CH3SCH20 + NO2 : 4.9D-12*exp(260/TEMP) ;

CH3SCH202 + NO3 = CH3SCH20 + NO2 : KRO2NO3 ;

CH3SCH202 = CH3SCH20 : 2*(K298CH302*1.0D-11)**0.5*R0O2*0.8 ;
CH3SCH202 = CH3SCH20H : 2*(K298CH302*1.0D-11)**0.5*R02*0.1 ;
CH3SCH202 = CH3SCHO : 2*(K298CH302*1.0D-11)**0.5*R0O2*0.1 ;
CH3SCH200H + OH = CH3SCHO + OH : 7.03D-11 ;

CH3SCH20O0H = CH3SCH20 + OH : (5.786D-6)*SUN ;

CH3SCH20 = CH3S + HCHO : KDEC ;

CH3SCH20H + OH = CH3SCHO + HO2 : 2.78D-11 ;

CH3SCHO + OH =CH3S + CO : 1.11D-11 ;

CH3SCHO = CH3S + CO + HO2 : (1.99D-5)*SUN ;

CH3SCH202 = OOCH2SCH20O0H : 2.2433D11*exp(-
9.8016D3/TEMP)*exp(1.0348D8/(TEMP*TEMP*TEMP))*5 ;

OOCH2SCH200H = HPMTF + OH : 6.097D11*exp(-
9.4892D3/TEMP)*exp(1.102D8/(TEMP*TEMP*TEMP)) ;

OOCH2SCH200H + NO = HOOCH2S + NO2 + HCHO : 4.9D-12*exp(260/TEMP) ;
OOCH2SCH200H + HO2 = HOOCH2SCH20OOH : 1.13D-13*exp(1300/TEMP) ;
HPMTF + OH = HOOCH2SCO : 1.4D-12 ;

HOOCH2SCO = HOOCH2S + CO : 9.2D9*exp(-505.4/TEMP) ;

HOOCH2SCO =HCHO + OH + OCS : 1.6D7*exp(-1468.6/TEMP) ;

HOOCH2S + O3 = HOOCH2SO : 1.15D-12*exp(430/TEMP) ;

10
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HOOCH?2S + NO2 = HOOCH2SO + NO : 6.00D-11%exp(240/TEMP) ;
HOOCH2SO0 + 03 = SO2 + HCHO + OH : 4.00D-13 ;

HOOCH2SO + NO2 = SO2 + HCHO + OH + NO : 1.20D-11 ;

CH3S + NO2 = CH3SO0 + NO : 6.00D-11*exp(240/TEMP) ;

CH3S + 03 = CH3SO : 1.15D-12%exp(430/TEMP) ;

CH3S = CH3SO00 : 1.20D-16*exp(1580/TEMP)*02 ;

CH3SO + NO2 = CH302 + SO2 + NO : 1.20D-11%0.25 ;

CH3SO + NO2 = CH3S02 + NO : 1.20D-11%0.75 ;

CH3SO + 03 = CH302 + SO2 : 4.00D-13 ;

CH3SO = CH3S002 : 3.12D-16*exp(1580/TEMP)*02 ;

CH3S0O0 +NO = CH3SO +NO2 : 1.1D-11 ;

CH3S00 +NO2 = CH3SO + NO3 : 2.2D-11 ;

CH3S00 = CH302 + SO2 : 5.60D+16*exp(-10870/TEMP) ;
CH3S0O0 = CH3S : 3.50D+10*exp(-3560/TEMP) ;

CH3SOO + HO2 = CH3SOOH : 4D-12 ;

CH3S00 = CH3S02: 1.0 ;

CH3S002 + HO2 = CH3S02 + OH : KAPHO2*0.44 ;

CH3S002 + HO2 = CH3SOOOH :KAPHO2*0.41 ;

CH3S002 + HO2 = MSIA + 03 : KAPHO2*0.15 ;

CH3S002 +NO = CH3S02 + NO2 : 1.00D-11 ;

CH3S002 + NO2 = CH3SO02NO2 : 1.20D-12*(TEMP/300)**(-0.9) ;
CH3S002 + NO3 = CH3S02 + NO2 : KRO2NO3*1.74 ;

CH3S002 = CH3S0 : 9.10E+10*exp(-3560/TEMP) ;

CH3S002 = CH3S02 : 1.00D-11*R02*0.7 ;

CH3S002 = MSIA : 1.00D-11*R02%0.3 ;

CH3SOOOH + OH = CH3S002 : 9.00D-11 ;

CH3SOOOH = CH3S02 + OH : (5.786D-6)*SUN ;

CH3SO02NO2 + OH = MSIA + NO2 : 1.00D-11 ;

CH3SO02NO2 = CH3S002 + NO2 : 5.40D+16*exp(-13112/TEMP) ;
CH3S02 + 03 = CH3S03 : 3.00D-13 ;

CH3S02 = CH302 + SO2 : 5.00D+13*exp(-9673/TEMP) ;

CH3S02 = CH3S0202 : 1.03D-16*exp(1580/TEMP)*02 ;

CH3SO2 + OH = MSA : 5D-11 ;

CH3S02 +NO2 = CH3S03 + NO : 2.2D-11 ;

CH3S0202 + HO2 = CH3SO200H : KAPHO2*0.41 ;

CH380202 + HO2 = CH3S03 + OH : KAPHO2*0.44 ;

CH3S0202 + HO2 = MSA + 03 : KAPHO2*0.15 ;

CH380202 + NO = CH3S03 + NO2 : 1.00D-11 ;

CH3S0202 + NO2 = CH3SO4NO2 : 1.20D-12*(TEMP/300)**(-0.9) ;
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195  CH3S0202 +NO3 = CH3S03 + NO2 : KRO2NO3*1.74 ;
196  CH3S0202 = CH3S02 : 3.01D+10*exp(-3560/TEMP) ;

197 CH3S0202 = CH3S03 : 1.00D-11*R02*0.7 ;

198 CH3S0202 =MSA : 1.00D-11*R0O2*0.3 ;

199  CH3SO3 +HO2 =MSA : 5.00D-11 ;

200  CH3SO3 = CH302 + SO3 : 5.00D+13*exp(-9946/TEMP) ;
01  CH3SO200H + OH = CH3S0202 : 3.60D-12 ;

202 CH3SO200H = CH3S03 + OH : (5.786D-6)*SUN ;

203 CH3SO04NO2 + OH = CH3S0202 + HNO3 : 3.60D-13 ;

)04  CH3SO4NO2 = CH3S0202 + NO2 : 5.40D+16*exp(-13112/TEMP) ;
205 HODMSO2 + NO = DMSO2 + HO2 + NO2 : KRO2NO ;

06 HODMSO2 = DMSO + HO2 : 8.90E+10*exp(-6040/TEMP) ;
07 DMSO + OH = MSIA + CH302 : 6.10D-12*exp(800/TEMP) ;
208  DMSO +NO3 = DMSO2 + NO2 : 2.9D-13 ;

09  DMSO2 + OH = DMS0202 : 4.40D-14 ;

10 DMSO0202 + HO2 = DMSO200H : KRO2HO02*0.387 ;

211 DMS0202 + NO = DMS020 + NO2 : KRO2NO ;

212 DMS0202 + NO3 = DMS020 + NO2 : KRO2NO3 ;

213 DMS0202 = CH3SO2CHO : 2.00D-12*R02*0.2 ;

14 DMS0202 = DMS020 : 2.00D-12*R02*0.6 ;

215 DMS0202 = DMSO20H : 2.00D-12*R02*0.2 ;

216 DMSO200H + OH = CH3SO2CHO + OH : 1.26D-12 ;

217 DMSO200H + OH = DMS0202 : 3.60D-12 ;

218 DMSO200H = DMS020 + OH : (5.786D-6)*SUN ;

219 DMS020 = CH3S02 + HCHO : KDEC ;

220  DMSO20H + OH = CH3SO2CHO + HO2 : 5.23D-13 ;

)21 DMSO20H + OH = DMS020 : 1.40D-13 ;

222 CH3SO2CHO + OH = CH3S02 + CO : 1.78D-12 ;

)23 CH3SO2CHO = CH3SO02 + CO + HO2 : (1.99D-5)*SUN ;
224 MSIA + OH = CH3S02 : 1D-10;

225  MSIA + NO3 =CH3S02 + HNO3 : 1D-13 ;

226 MSA + OH = CH3S03 : 2.24D-14 ;

227

228 S1.4.3 Fung et al. (2021)

229 DMS + OH = MTMP: 1.12D-11*EXP(-250/TEMP) ;

230  MTMP + NO = CH3SCH20 + NO2 : 4.90D-12*EXP(260/TEMP) ;
231 MTMP = CH3SCH20 + 02 : 3.74D-12*RO2 ;

232 CH3SCH20 = CH3S +HCHO : 1.00D+6 ;

233 CH3S + 03 =CH3S0 + 02 : 1.15D-12*EXP(430/TEMP) ;



234
2135
236
2137
238
239
240
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242
243
244
245
246
247
248
249
250
251
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254
255
256
257
258
259
260
261
262
263
264
265
266
267
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269
270
771
72

CH3S + 02 = CH3S00 : 1.20D-16*EXP(1580/TEMP)*02 ;
CH3SO + 03 = CH302 + SO2 : 4.0D-13 ;

CH3S00 = CH302 + SO2 : 5.60D+16*EXP(-10870/TEMP) ;

CH3S00 = CH3S02 : 1.00 ;

CH3S02 + 03 = CH3S03 + 02 : 3.0d-13;

CH3S02 = CH302 + SO2 : 5.00D13*EXP(-9673/TEMP) ;

CH3SO03 + HO2 = MSA + 02 : 5.0d-11 ;

CH3S03 = CH302 + H2S04 : 5.00D+13*EXP(-9946/TEMP) ;

MTMP= OOCH2SCH200H : 2.24D+11*EXP(-9800/TEMP)*EXP(1.03D+8/(TEMP*TEMP*TEMP)) ;
OOCH2SCH200H = HPMTF + OH : 6.09D+11*EXP(-9500.0/TEMP)*EXP(1.1D+8/(TEMP*TEMP*TEMP)) ;
OOCH2SCH200H + NO = OCH2SCH200H + NO2 : 4.9D-12*EXP(260/TEMP) ;

OCH2SCH200H = HOOCH2S + HCHO : 1.00D+6 ;

OOCH2SCH200H + HO2 = HOOCH2SCH200H + 02 : 1.13D-13*EXP(1300/TEMP) ;

HPMTF + OH = HOOCH2SCO + H20 : 1.11D-11 ;

HOOCH2SCO = HOOCH2S + CO : 9.20D+9*EXP(-505.4/TEMP) ;

HOOCH2SCO = OH + HCHO + OCS : 1.60D+7*EXP(-1468.6/TEMP) ;

HOOCH?2S + 03 = HOOCH2SO : 1.15D-12*EXP(430/TEMP) ;

HOOCH?2S + NO2 = HOOCH2SO + NO : 6.00D-11*EXP(240/TEMP) ;

HOOCH2SO + 03 = HCHO + OH + SO2 : 4.0D-13 ;

HOOCH2SO + NO2 = SO2 + HCHO + OH +NO: 1.2d-11;

DMS + OH = SO2 + CH302 : 8.2D-39*02*EXP(5376/TEMP)/(1+7.5D-5*(02/M)*EXP(3644/TEMP))*0.6 ;
DMS + OH = DMSO + CH302 : 8.2D-39*02*EXP(5376/TEMP)/(1+7.5D-5*(02/M)*EXP(3644/TEMP))*0.4 ;
DMS + NO3 = SO2 + HNO3 + CH302 + HCHO : 1.13D-12*EXP(530/TEMP) ;

DMSO + OH = MSIA : 8.94D-11*EXP(800/TEMP)*0.95 ;

DMSO + OH = SO2 : 8.94D-11*EXP(800/TEMP)*0.05 ;

MSIA + OH = SO2 : 9.00D-11%0.9 ;

MSIA + OH = MSA : 9.00D-11*0.1 ;

MSIA + 03 = MSA : 2.00D-18 ;

MSIA + 03 = MSA : 2.00D-18 ;

S1.4.4 Khan et al. (2021)
DMS + OH = MTMP+ H20 : 1.2D-11*EXP(-280/TEMP) ;

DMS + OH = DMSO + HO2 : 9.5D-39*02*EXP(5270/TEMP)/(1+7.5D-29*02*EXP(5610/TEMP)) ;
DMS + NO3 = MTMP + HNO3 : 1.90D-13*EXP(580/TEMP) ;

MTMP + NO = HCHO + CH3S + NO2 : 4.90D-12*EXP(260/TEMP) ;

MTMP + MTMP = HCHO + HCHO + CH3S + CH3S : 1.0d-11 ;

MTMP + HO2 = CH3SCH200H: 2.9D-13*EXP(1300/TEMP) ;

CH3SCH200H = CH3S + HCHO + OH: (5.78677D-6)*SUN ; {J41}

CH3SCH200H + OH = CH3SCHO + OH: 7.0D-11 ;
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CH3SCHO + OH = CH3S + CO : 1.1D-11 ;
CH3SCHO = CH3S + CO + HO2 : (1.99124D-5)*SUN ;

CH3S + 03 = CH3SO : 1.15D-12*EXP(430/TEMP) ;

CH3S +NO2 = CH3SO + NO : 3.00D-12*EXP(210/TEMP) ;

CH3SO +NO2 = CH3S02 + NO : 1.2d-11*0.82 ;

CH3SO + NO2 = SO2 + CH302 + NO : 1.2d-11*0.18 ;

CH3SO + 03 = CH3S02 : 6.0d-13 ;

CH3S02 = SO2 + CH302 : 5.00D13*EXP(-9673/TEMP) ;

CH3S02 +NO2 = CH3S03 + NO : 2.2d-12 ;

CH3S02 + 03 = CH3S03 : 3.0d-13 ;

CH3S03 + HO2 = MSA : 5.0d-11 ;

CH3S03 = CH302 + H2S04 : 1.36D14*EXP(-11071/TEMP) ;

DMSO + OH = MSIA + CH302 : 8.7d-11%0.95 ;

MSIA + OH = CH3S02 + H20 : 9.d-11%0.95 ;

MSIA + OH=MSA + HO2 + H20:  9.d-11*0.05 ;

MSIA + NO3 = CH3S02 + HNO3 : 1.0d-13 ;

MTMP = OOCH2SCH200H + 02: 2.74D+7*EXP(-5950/TEMP) ;
OOCH2SCH200H = HPMTF + OH: 4.2D+7*EXP(-5390/TEMP) ;
OOCH2SCH200H + NO = HOOCH2S + NO2 + HCHO : 4.9D-12*exp(260/TEMP) ;
OOCH2SCH200H + HO2 = HOOCH2SCH200H : 1.13D-13%*exp(1300/TEMP) ;
HOOCH2SCH200H = HOOCH2S + HCHO + OH : (5.78677D-6)*SUN ; {J41}
HOOCH2SCH200H + OH = O0CH2SCH200H : 1.36D-11 ;

HPMTF + OH = HOOCH2S + CO : 1.4D-12%(5.6D-3*TEMP - 1.24) ;

HPMTF + OH = OH + HCHO + OCS : 1.4D-12%(1-(5.6D-3*TEMP - 1.24)) ;
HPMTF = HOOCH2S + CO + HO2: (5.78677D-6)*SUN ; {J41}

HPMTEF = OCS + HCHO + OH: (2.0126D-5)*SUN;; {J14}

HOOCH2S + 03 = HOOCH2SO : 1.15D-12%exp(430/TEMP) ;

HOOCH?2S + NO2 = HOOCH2SO + NO : 6.00D-11%exp(240/TEMP) ;
HOOCH2SO0 + 03 = SO2 + HCHO + OH : 4.00D-13 ;

HOOCH2SO +NO2 = SO2 + HCHO + OH + NO : 1.20D-11 ;

S1.4.5 Novak et al. (2021)
DMS + OH = MTMP + H20 : 1.12D-11*EXP(-250/TEMP) ;

DMS + OH = S02 : (8.2D-39*02*EXP(5376/TEMP) / (1+ 1.05D5*EXP(3644/TEMP)*0.2095))*0.75 ;
DMS + OH = MSA : (8.2D-39*02*EXP(5376/TEMP) / (1+ 1.05D-5*EXP(3644/TEMP)*0.2095))*0.25 ;
DMS + NO3 = MTMP + HNO3 : 1.90D-13*EXP(520/TEMP) ;

MTMP + HO2 = SO2 : 1.13D-13*EXP(1300/TEMP) ;

MTMP +RO2 =S02 : 1.0D-11 ;

MTMP + NO = SO2 + NO2 : 4.9D-12*EXP(260/TEMP) ;
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MTMP + NO3 =S02 +NO2 :2D-12;
MTMP = HPMTF : 2.24D+11*EXP(-9800/TEMP)*EXP(1.03D+8/(TEMP*TEMP*TEMP)) ;
HPMTF + OH=S02:1.11D-11 ;
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329
330  Figure S7: Relative difference in SO, mixing ratios in the lower troposphere (< 2 km) between CS2-HPMTF
331 and the StratTrop run ST (CS2-HPMTF - ST). Only values above the ocean are shown.

332

333

334

335  Table S5: Average tropospheric lifetimes of selected species

336

CS2 ST CS2-HPMTF CS2-HPMTF- CS2-HPMTF-
FL FP
| T T T T T

DMS 35.59h 36.34h 34.63 h 34.68 h 3437h
MTMP 26.61 min - 0.99 min 0.98 min 0.25 min
DMSO 6.17h - 6.15h 6.16h 6.09 h
MSA - - 6.08 d 6.08 d 6.07d
MSIA 6.38h - 481 h 481 h 474 h

HPMTF - - 25.76 h 9.66 h 25.79h



SO,
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339

340  Table S6: Sulfate in the different aerosol modes by weight.

341

Nucleation Aitken Accumulation Coarse
| | | | |

CS2 2.0% 26.2% 69.8% 2.0%
ST 1.7% 27.8% 69.2% 1.4%
CS2-HPMTF 2.1% 26.6% 69.5% 1.8%
CS2-HPMTF-CLD  2.0% 25.5% 70.0% 2.5%
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