Supplemental Information

2 Brown Carbon Aerosol in Polluted Urban Air of North China Plain: Day-

3 night Differences in the Chromophores and Optical Properties

4 Yuquan Gong et al.

1

5 Table S1. Retention Times (RTs), Abbreviation, Elemental Formulas, and Assigned Structures of

6 Identified BrC Chromophores. ^(*) represent tentative structure components.

Peak #	RT (min)	Candidate compound	Abbreviatio n	m/z &ion. Mech.	Formula	Refernce	Unambiguous/Tentati ve stucture
1#	1.69	Isoquinoline	ISO	130.065 [M & H] ⁺	C ₉ H ₇ N	Banerjee & Zare, 2015	N
2#	2.03	Leucoline	LEU	130.065 [M & H] ⁺	C ₉ H ₇ N	Banerjee & Zare, 2015	
3#	6.06	Phthalic acid	PA	149.023 [M & H] ⁺	$C_8H_4O_3$	He et al., 2018	но - С С С С С С С С С С С С С С С С С С
4#	7.21	4-nitrocatechol	4NC	154.014 [M & H] ⁻	C ₆ H ₅ NO ₄	Huang et al. 2020	-o. NEO
5#	7.87	vanillin	VAN	153.054 [M & H] ⁺	$C_8H_8O_3$	Huang et al., 2021	° T T T T T T T T T T T T T T T T T T T
6#	9.15	p-cis-coumaric acid	PCCA	163.040 [M & H] ⁻	$C_9H_8O_3$	Smith, Kinney, & Anastasio, 2016	Ссоон
7#	11.48	4-nitrophenol	4NP	139.019 [M & H] ⁻	C ₆ H ₅ NO ₃	Wang et al., 2017	'a J
8#	13.53	4-methyl-5-nitrocatechol	4M5NC	168.030 [M & H] ⁻	C ₇ H ₇ NO ₄	Kitanovski et al., 2012	HO CH
9#	13.82	3-methyl-6-nitrocatechol	3M6NC	168.030 [M & H] ⁻	C ₇ H ₇ NO ₄	Lin et al., 2015	HO OH
10#	16.06	4-nitrosyringol	4NS	198.040 [M & H] ⁻	C ₈ H ₉ NO ₅	Lin et al., 2017	
11#	18.23	3-methyl-5-nitrocatechol	3M5NC	168.030 [M & H] ⁻	C ₇ H ₇ NO ₄	Wang et al., 2017	H H H H H H H H H H H H H H H H H H H
12#	18.72	1-Formyl-2-naphthol	1F2N	171.045 [M & H] ⁻	$C_{11}H_8O_2$	Rao et al., 2003 ^(*)	но
13#	19.43	3-methyl-4-nitrophenol	3M4NP	152.035 [M & H] ⁻	C ₇ H ₇ NO ₃	Wang et al., 2017	ON THE PARTY OF TH
14#	20.06	1,2-acenaphthylenedione	1,2ACE	183.044 [M & H] ⁺	$C_{12}H_6O_2$	Bandowe et al., 2014	

Peak #	RT (min)	Candidate compound	Abbreviatio n	m/z &ion. Mech.	Formula	Refernce	Unambiguous/Tentati ve stucture
15#	20.53	1,8-naphthalic anhydride	1,8NA	199.038[M & H] ⁺	$C_{12}H_6O_3$	Bandowe et al., 2014	
16#	21.95	2-methyl-4-nitrophenol	2M4NP	152.035 [M & H] ⁻	C ₇ H ₇ NO ₃	Yuan et al., 2020	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17#	26.08	2,6-Dimethyl-4-nitrophenol	2,6D4NP	166.051 [M & H] ⁻	C ₈ H ₉ NO ₃	Yuan et al., 2020	H H H H H H H H H H H H H H H H H H H
18#	26.39	3,5-Dimethyl-4-nitrophenol	3,5D4NP	166.051 [M & H] ⁻	C ₈ H ₉ NO ₃	Fischer & Mathivanan, 1988 ^(*)	E-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
19#	27.12	9-fluorenone	9FLU	181.064 [M & H] ⁺	C ₁₃ H ₈ O	Huang et al. 2020	
20#	28.21	2,3-Dimethyl-4-nitrophenol	2,3D4NP	166.051 [M & H]	C ₈ H ₉ NO ₃	Fischer & Mathivanan, 1988 ^(*)	*o
21#	36.93	Benzanthrone	BEN	231.079 [M & H] ⁺	$C_{17}H_{10}O$	Huang et al. 2020	
22#	38.41	Benzo[b]fluoren-11-one	BbF11O	231.080 [M & H] ⁺	C ₁₇ H ₁₀ O	Yuan et al., 2020	
23#	39.27	Phenanthrene	PHE	178.23 $[M \& H]^+$	$C_{14}H_{10}$	Ho et al., 2009	
24#	39.88	Anthracene	ANT	178.22[M & H] ⁺	$C_{14}H_{10}$	Alcanzare, 2006	
25#	41.23	Fluoranthene	FLU	202.25[M & H] ⁺	$C_{16}H_{10}$	Lee & Lane, 2010	
26#	41.7	Pyrene	PYR	202.25[M & H] ⁺	C ₁₆ H ₁₀	Ho et al., 2009	
27#	42.48	Benzo[b]naphtho[1,2-d]furan	BbN[1,2d]F	218.25[M & H] ⁺	C ₁₆ H ₁₀ O	Standards	JP)
28#	43.46	Chrysene	CHR	228.28[M & H] ⁺	C ₁₈ H ₁₂	Bandowe et al., 2014	
29#	43.63	Benzo(a)anthracene	BaA	240.36[M & H] ⁺	$C_{18}H_{12}$	Huang et al. 2020	
30#	44.94	Benzo(j)fluoranthen	BjF	252.31[M & H] ⁺	C ₂₀ H ₁₂	Standards	C C
31#	45.23	Benzo(e)pyrene	BeP	252.31[M & H] ⁺	$C_{20}H_{12}$	Ho et al., 2009 ^(*)	
32#	45.29	Benzo(b)fluoranthene	BbF	252.31[M & H] ⁺	C ₂₀ H ₁₂	Yuan et al., 2020	
33#	45.46	Benzo(k)fluoranthene	BkF	252.31[M & H] ⁺	C ₂₀ H ₁₂	Standards	
34#	45.79	Benzo(a)pyrene	BaP	252.31[M & H] ⁺	$C_{20}H_{12}$	Ho et al., 2009	
35#	46.73	Indeno[1,2,3-cd]fluoranthene	I[1,2,3cd]F	276.33[M & H] ⁺	C ₂₂ H ₁₂	Alcanzare, 2006 (*)	

Peak #	RT (min)	Candidate compound	Abbreviatio n	m/z &ion. Mech.	Formula	Refernce	Unambiguous/Tentati ve stucture
36#	47.43	Indeno(1,2,3-cd)pyrene	I[1,2,3cd]P	276.33[M & H] ⁺	C ₂₂ H ₁₂	Standards	
37#	47.53	Benzo(g,h,i)perylene	B(g,h,i)P	276.33[M & H] ⁺	C ₂₂ H ₁₂	Alcanzare, 2006	
38#	48.25	Anthanthrene	ANTHA	276.33[M & H] ⁺	C ₂₂ H ₁₂	Standards ^(*)	

10 **Table S2.** Average (\pm standard deviation) values Abs_{365nm}, MAE_{365nm}, and AAE of WS-BrC and WIS-BrC, as well as concentrations of WSOC and WISOC, 11 measured organic species in the PM 2.5 aerosols from the urban. ^a represents the determination of the HULIS extraction solution. Here **Abs_{365, MS-BrC}** is the 12 light absorption coefficient of methanol-soluble BrC at 365 nm.

Componente	This study		Li et al. (2020)		Huang et al. (2021)		Li et al. (2021)	
Components	Day	Night	Day	Night	Xi'an	Beijing	Day	Night
WSOC ($\mu g m^{-3}$)	17.29±14.49	12.90±13.36	22.1±8.0	21.7±10.4	$12.4\pm6.50^{\text{a}}$	$6.4\pm3.80^{\text{ a}}$	/	/
WISOC ($\mu g m^{-3}$)	29.78±22.39	31.07±12.47	21.9±10.1	26.2±17.3	20.80±7.90	16.30±8.90	/	/
Abs ₃₆₅ , _{WS-BrC} (Mm ⁻¹)	46.04±38.91	35.68±35.50	19.2±6.8	19.9±9.5	31.50±16.40 ^a	15.00±9.50 ^a	/	/
Abs ₃₆₅ , _{MS-BrC} (Mm ⁻¹)	79.86±66.50	82.69±55.84	/	/	/	/	50.0±5.00	75.0±7.50
Abs ₃₆₅ , _{WIS-BrC} (Mm ⁻¹)	27.90±24.80	40.88±23.42	17.2±8.2	26.7±15.8	33.90±16.40	26.10±18.40		
MAE ₃₆₅ , ws-Brc ($m^2 g C^{-1}$)	2.58±0.14	2.88±0.24	0.92±0.21	0.94±0.28	1.80 ± 0.30^{a}	1.80 ± 0.40^{a}	/	/
MAE ₃₆₅ , wis-BrC ($m^2 g C^{-1}$)	1.02±0.49	1.43±0.83	0.85±0.34	1.05±0.28	1.50±0.50	1.50±0.40	1.73±0.64	2.13±0.65
AAE _{WS-BrC}	5.10±0.28	5.51±0.40	5.14±0.2	5.07±0.72	8.20 ± 1.00	9.40 ± 2.60	/	/
AAEwis-brc	6.36±0.45	6.97±0.80	5.94±0.12	6.15±0.24	5.4 ± 0.20	5.7 ± 0.20	5.16 ±1.15	4.07 ±0.87

Categories	Subgroups	Candidate compound				
T	quinclines	Isoquinoline				
1	quinoimes	Leucoline				
		1-Formyl-2-naphthol				
II	2–3-ring OPAHs	1,2-acenaphthylenedione				
		1,8-naphthalic anhydride				
		9-fluorenone				
		4-nitrocatechol				
III	nitrocatechols	4-methyl-5-nitrocatechol				
		3-methyl-6-nitrocatechol				
		3-methyl-5-nitrocatechol				
		4-nitrophenol				
		3-methyl-4-nitrophenol				
IV	nitrophenols	2-methyl-4-mitrophenol				
		3.5 Dimethyl 4 nitrophenol				
		2 3-Dimethyl-4-nitrophenol				
		Phthalic acid				
		vanillin				
V	aromatic alcohols and acids	p-cis-coumaric acid				
		4-nitrosyringol				
		Benzanthrone				
VI	4-ring OPAHs	Benzo[b]fluoren-11-one				
		Benzo[b]naphtho[1,2-d]furan				
VII	2 - DALL	Phenanthrene				
V 11	3-ring PAHs	Anthracene				
		Fluoranthene				
VIII	4 ring DAHe	Pyrene				
V III		Chrysene				
		Benzo(a)anthracene				
		Benzo(j)fluoranthene				
		Benzo(e)pyrene				
IX	5-ring PAHs	Benzo(b)fluoranthene				
		Benzo(k)fluoranthene				
		Benzo(a)pyrene				
		Indeno[1,2,3-cd]fluoranthene				
Х	6-ring PAHs	Indeno(1,2,3-cd)pyrene				
	č	Benzo(g,h,i)perylene				
		Anthanthrene				

Table S3. The identified 38 BrC chromophores are divided into ten subgroups.

Figure S1. Relative contributions of light absorption of ten BrC subgroups during the day and night.

19 References

- 20 Alcanzare, R. J. C.: Polycyclic aromatic compounds in wood soot extracts from Henan, China, 2006.
- Bandowe, B. A. M., Meusel, H., Huang, R.-j., Ho, K., Cao, J., Hoffmann, T., & Wilcke, W. PM2.5-bound
 oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal
 variation, sources and cancer risk assessment. Sci Total Environ., 473-474, 77-87.
 https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.11.108, 2014.
- Banerjee, S. and Zare, R. N.: Syntheses of isoquinoline and substituted quinolines in charged microdroplets,
 Angew. Chem., 127, 15008-15012, 2015.
- Fischer, A., & Mathivanan, N. Formation of dienones on the reaction of cresols, xylenols, and 2-naphthol
 with nitrogen dioxide: Observation of keto tautomers of nitrophenols. Tetrahedron lett., 29(16), 1869-1872,
 1988.
- He, X., Huang, X. H. H., Chow, K. S., Wang, Q., Zhang, T., Wu, D., & Yu, J. Z. Abundance and Sources of 30 31 Phthalic Acids, Benzene-Tricarboxylic Acids, and Phenolic Acids in PM2.5 at Urban and Suburban Sites 32 Southern in China. ACS Earth and Space Chem., 2(2),147-158. 33 https://doi.org/10.1021/acsearthspacechem.7b00131, 2018.
- Ho, K., Ho, S. S. H., Lee, S., Cheng, Y., Chow, J. C., Watson, J. G., Louie, P. K. K., & Tian, L. Emissions of
 gas-and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong.
 Atmos. Environ., 43(40), 6343-6351, 2009.
- Huang, R.-J., Yang, L., Shen, J., Yuan, W., Gong, Y., Guo, J., Cao, W., Duan, J., Ni, H., & Zhu, C. Waterinsoluble organics dominate brown carbon in wintertime urban aerosol of China: chemical characteristics
 and optical properties. Environ. Sci. Technol., 54(13), 7836-7847, 2020.
- Huang, R.-J., Yang, L., Shen, J., Yuan, W., Gong, Y., Ni, H., Duan, J., Yan, J., Huang, H., & You, Q.
 Chromophoric Fingerprinting of Brown Carbon from Residential Biomass Burning. Environ. Sci. Technol.
 Lett., 2021.
- Kitanovski, Z., Grgić, I., Yasmeen, F., Claeys, M., & Čusak, A. Development of a liquid chromatographic
 method based on ultraviolet–visible and electrospray ionization mass spectrometric detection for the
 identification of nitrocatechols and related tracers in biomass burning atmospheric organic aerosol. Rapid
- 46 Commun. Mass Spectrom., 26(7), 793-804, 2012.
- 47 Lee, J., & Lane, D. A. Formation of oxidized products from the reaction of gaseous phenanthrene with the
 48 OH radical in a reaction chamber. Atmos. Environ., 44(20), 2469-2477, 2010.
- Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., & Ho, K. F. Optical properties
 and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in
 northwest China. Atmos. Chem. Phys., 20(8), 4889-4904, 2020.
- Li, X., Zhao, Q., Yang, Y., Zhao, Z., Liu, Z., Wen, T., Hu, B., Wang, Y., Wang, L., & Wang, G. Composition
 and sources of brown carbon aerosols in megacity Beijing during the winter of 2016. Atmos. Res., 262,
 105773, 2021.
- Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., & Laskin, A. Molecular Chemistry of
 Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environ. Sci. Technol.,
 51(20), 11561-11570. https://doi.org/10.1021/acs.est.7b02276, 2017.
- Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., & Laskin, A. Molecular characterization of brown
 carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys.
 Chem. Chem. Phys., 17(36), 23312-23325, 2015.
- 61 Rao, P. V., Rao, C. P., Wegelius, E. K., & Rissanen, K. 2-hydroxy-1-naphthaldehyde-derived Schiff bases:
- 62 synthesis, characterization, and structure. J. Chem. Crystallogr., 33(2), 139-147.

63 <u>https://doi.org/10.1023/A:1023226925997</u>, 2003.

- Smith, J. D., Kinney, H., & Anastasio, C. Phenolic carbonyls undergo rapid aqueous photodegradation to
 form low-volatility, light-absorbing products. Atmos. Environ., 126, 36-44.
 https://doi.org/10.1016/j.atmosenv.2015.11.035, 2016.
- Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L., Chen, J., & Wang, W. Emissions
 of fine particulate nitrated phenols from the burning of five common types of biomass. Environ. Pollut.,
 230, 405-412, 2017.
- 70 Yuan, W., Huang, R.-J., Yang, L., Guo, J., Chen, Z., Duan, J., Wang, T., Ni, H., Han, Y., & Li, Y.
- 71 Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon
- aerosol in Xi'an, northwestern China. Atmos. Chem. Phys., 20(8), 5129-5144, 2020.