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Abstract. As air pollution is regarded as the single largest environmental health risk in Europe it is important that 

communication to the public is up-to-date, accurate and provides means to avoid exposure to high air pollution levels. Long- 

as well as short-term exposure to outdoor air pollution is associated with increased risks of mortality and morbidity. Up-to-

date information on present and coming days’ air quality help people avoid exposure during episodes with high levels of air 15 

pollution. Air quality forecasts can be based on deterministic dispersion modelling, but to be accurate this requires detailed 

information on future emissions, meteorological conditions and process oriented dispersion modelling. In this paper we apply 

different machine learning (ML) algorithms – Random forest (RF), Extreme Gradient Boosting (XGB) and Long-Short Term 

Memory (LSTM) – to improve 1-, 2- and 3-day deterministic forecasts of PM10, NOx, and O3 at different sites in Greater 

Stockholm, Sweden.  20 

It is shown that the deterministic forecasts can be significantly improved using the ML models but that the degree of 

improvement of the deterministic forecasts depends more on pollutant and site than on what machine learning algorithm is 

applied. Deterministic forecasts of PM10 is improved by the ML models through the input of lagged measurements and Julian 

day partly reflecting seasonal variations not properly parameterised in the deterministic forecasts. A systematic discrepancy 

by the deterministic forecasts in the diurnal cycle of NOx is removed by the ML models considering lagged measurements and 25 

calendar data like hour of the day and weekday reflecting the influence of local traffic emissions. For O3 at the urban 

background site the local photochemistry is not properly accounted for by the relatively coarse Copernicus Atmosphere 

Monitoring Service ensemble model (CAMS) used here for forecasting O3, but is compensated for using the ML models by 

taking lagged measurements into account. The machine learning models performed similarly well for the sites and pollutants. 

Performance measures like Pearson correlation, root mean square error (RMSE), mean absolute percentage error (MAPE) and 30 

mean absolute error (MAE), typically differed less than 30% between ML models. At the urban background site, the deviations 

between modelled and measured concentrations (RMSE errors) are smaller than uncertainties in the measurements estimated 
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according to recommendations by the Forum for Air Quality Modeling (FAIRMODE) in the context of the air quality 

directives. At the street canyon sites modelled errors are higher, and similar to measurement uncertainties. Further work is 

needed to reduce deviations between model results and measurements for short periods with relatively high concentrations 

(peaks). Such peaks can be due to a combination of non-typical emissions and unfavourable meteorological conditions and 

may be difficult to forecast. We have also shown that deterministic forecasts of NOx at street canyon sites can be improved 5 

using ML models even if they are trained at other sites. For PM10 this was only possible using LSTM. 

An important aspect to consider when choosing ML algorithms is the computational requirements for training the models in 

the deployment of the system. Decision tree-based models (RF and XGB) requires less computational resource than the deep 

learning model. Therefore, a random forest model is now implemented operationally in the forecasts of air pollution and health 

risks in Stockholm. Development of the tuning process and identification of more efficient predictors may make forecast more 10 

accurate. 
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1 Introduction 

According to the World Health Organisation (WHO) air pollution is one of the leading causes of mortality worldwide and is 

regarded as the single largest environmental health risk (Fuller et al., 2022). Acute effects of air pollution are due to short-term 

(e.g. daily) exposures that can lead to reduced lung function, respiratory infections and aggravated asthma (Lee et al., 2021). 5 

According to the European air quality directive, information on the air quality should be made available to the public. Public 

information regarding the expected health risks associated with current or the next few days concentrations of pollutants can 

be very important for sensitive persons when planning their outdoor activities. 

There are different approaches to obtain information on the spatio-temporal variation of air pollutant concentrations - from 

simple statistical models to advanced process-oriented models. Gaussian plume models are widely used in urban areas for 10 

estimating impacts on atmospheric concentrations from different emission sources and for health risk assessments (Munir et 

al., 2020; Johansson et al., 2009; Orru et al., 2015; Johansson et al., 2017). Eulerian chemical transport models that describe 

emission, transport, mixing, and chemical transformation of trace gases and aerosols such as e.g. CHIMERE, EMEP and 

MATCH are part of the Copernicus Atmosphere Monitoring Service (CAMS, atmosphere.copernicus.eu/) to predict air 

pollution over Europe (Horàlek et al., 2019). The uncertainties in the output of the deterministic models include uncertainties 15 

in the input, such as emissions, model algorithms and parameterisations. In urban areas detailed knowledge of the emissions 

is crucial, and there may be important non-linear relationship between the concentration of contaminants and emission. Another 

method widely used to obtain spatio-temporal estimates of air pollutant concentrations without detailed knowledge of 

emissions is Land use regression (Hoek et al., 2008).  

Application of machine learning models (ML) to predict outdoor air quality is getting more and more popular (Rybarczyk and 20 

Zalakeviciute, 2018; Iskandaryan et al., 2020). Studies have used ML to predict both hourly and daily average concentrations 

of particulate matter (PM) as well as gaseous air pollutants using meteorological and traffic data (e.g. Quadeer et al., 2020; Di 

et al., 2019; Thongthammachart et al., 2021; Kamińska, 2019; Chuluunsaikhan et al., 2021; Doreswamy et al., 2020; Castelli 

et al., 2020; Stafoggia et al., 2020; Stafoggia et al., 2019). In addition, a combination of ML, LUR, dispersion modelling, 

ground-based and satellite measurements have been used to obtain temporally and spatially distributed concentrations (Shtein 25 

et al., 2020; Staffogia et al., 2019; Brokamp et al., 2017; Di et al., 2019). Forecasting air pollution concentrations in a longer-

term horizon such as a day or several days have been investigated by e g Kleinert et al. (2022) for O3. Some studies have also 

combined deterministic models and ML in forecasting air pollution levels of a few hours/days in the future (e g Hong et al., 

2022), but mostly for one single pollutant at the time.  

In this paper we demonstrate how ML can help improve the accuracy of 1-, 2- and 3-day deterministic forecasts of particulate 30 

matter (PM10, particles with an aerodynamic diameter less than 10 µm), nitrogen oxides (NOx) and ozone (O3) for urban 

background and street canyon sites in Stockholm, Sweden. The deterministic forecast utilises the CAMS ensemble model to 
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account for non-local sources (long-range transport). A Gaussian model is applied over the urban area of Stockholm accounting 

for local emissions and a street canyon model (OSPM) to account for the effect of buildings on the dispersion of local traffic 

emissions along the roads in the central area of the city. We compare three different machine learning algorithms; two based 

on decision trees (random forest and XG Boost) and one neural network model (LSTM). Important questions addressed are 

also if there are systematic differences in performance depending on different pollutants and different sites.  5 

2 Methods 

2.1 Air pollution measurements  

Input data for ML modelling are taken from four monitoring stations in central Stockholm, including one urban background 

site (Torkel Knutssonsgatan, hereafter called UB or urban) and 3 street canyon sites (Hornsgatan HO, Folkungagatan FO and 

Sveavägen SV). They are all located in central Stockholm (Figure 1). Detailed descriptions of measurement methods and sites 10 

are provided in Appendix A.  

Data from the UB site covers approx. 1000 days (10 April 2019 through 31 December 2021). As the OSPM-model became 

operational at a later date, the street canyon data extends over 500 days (5 August 2020 through 31 December 2021). All the 

data was collected at 1-hour intervals, and the details are shown in Table 1. 

 15 

Figure 1. Map of central Stockholm showing locations of the urban background site and the street canyons traffic sites. Base map 

credits: © OpenStreetMap contributors. 
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Table 1. Details of the datasets. 

Name Start Time End Time Amount (Time interval=1 hour) 

urban background 04/10/2019  00:00:00 12/31/2021  23:00:00 23927 

Folkungagatan 08/05/2020  00:00:00 12/31/2021  23:00:00 12335 

Hornsgatan 08/05/2020  00:00:00 12/31/2021  23:00:00 12335 

Sveavägen 08/05/2020  00:00:00 12/31/2021  23:00:00 12335 

 

The measurement data with a missing rate of less than 5% and missing values are replaced with mean values of available data 

in the neighbourhood according to the respective autocorrelation properties. 

 5 

2.2 The Stockholm air quality forecast system 

Three different dispersion models are used to forecast concentrations considering emissions and dispersion at European, urban 

and street scale (Figure 2). The CAMS ensemble model, part of the Copernicus program was used to obtain forecasts of long-

range transported air pollution from outside of the Greater Stockholm model domain. Previous assessments have found the 

ensemble model to be the more accurate than any individual model part of CAMS (Meteo-France, 2017; Marècal et al., 2015). 10 

CAMS regional ensemble forecasts are published once a day and each forecast covers 96 hours (4 days). Forecasted 

concentrations representative of background air, hour by hour, are extracted from a location outside the greater Stockholm 

domain. All regional models constituting the CAMS ensemble includes physical and chemical schemes dealing with gas phase 

chemistry, heterogeneous chemistry, aerosol size distribution, aqueous phase chemistry, dry deposition, sedimentation, mineral 

dust, sea salt, wet deposition, etc. An evaluation of the CAMS regional ensemble forecast in Stockholm has been performed 15 

by Säll (2018).  

The contributions to concentrations due to local emissions in the metropolitan area were performed on a 100 m resolution 

using a Gaussian dispersion model part of the Airviro system (https://www.airviro.com/airviro/). In this modelling domain 

(Greater Stockholm, 35 by 35 km) individual buildings and street canyons are not resolved but treated using a roughness 

parameter (Gidhagen et al., 2005). The Gaussian model is fed with meteorological forecasts from the Swedish Meteorological 20 

and Hydrological Institute (SMHI). A diagnostic wind model is used to account for influences of variations in topography and 

land-use on the dispersion parameters input to the Gaussian model. For details regarding uncertainties and validation of local 

modelling see Johansson et al. (2017).  

Finally, the Operational Street Pollution Model (OSPM, Berkowicz, 2000), driven by forecasted meteorology from SMHI is 

applied for the street canyon sites. It has been applied earlier at Hornsgatan in Stockholm in a number of modelling studies 25 

(e.g. Krecl et al., 2021; Ottosen et al., 2015). NOx and PM10 are modelled on all scales, whereas O3 is only forecasted by the 

CAMS ensemble model. 

 

https://www.airviro.com/airviro/


 

6 

 

 

Figure 2. Illustration of the deterministic modelling from European scale at a resolution of 0.1° by 0.1° (ca 11 km × 6 km), via urban 

scale (100 m resolution over an area of 35 by 35 km) down to the street canyon sites. The CAMS ensemble forecast map example is 

taken from https://atmosphere.copernicus.eu/ (accessed 1 Feb 2023). The map with the Gaussian model local forecast example is 

output from the Airviro system (https://www.airviro.com/airviro/, accessed 1 Feb 2023) used in Stockholm. The illustration of a 5 
street canyon site is taken from https://www.wikiwand.com/en/Operational_Street_Pollution_Model (accessed 1 Feb 2023).  

 

For the urban scale model domain a detailed emission database is used as input for the local dispersion modelling. The database 

and its applications and comparisons between modelling and measurements are described in SLB (2022). The total emissions 

from road traffic are based on emission factors for different vehicle types including passenger cars (diesel, gasoline, gas), buses 10 

(diesel, ethanol), light duty trucks <3.5 ton (diesel and gasoline) and heavy duty trucks >3.5 ton (diesel). Exhaust emission 

factors of NOx and particles are based on HBEFA version 3.3 (Keller et al., 2017) depending on vehicles Euro class. The 

emission factors per vehicle category were weighted according to the national Swedish Transport Administration vehicle 

registry, but the vehicle composition taken from national vehicle registry has been shown to be similar to the local fleet using 

real world number plate recognition measurements at Hornsgatan in campaigns during 2009 (Burman and Johansson, 2010) 15 

and 2017 (Burman et al., 2019). For more details, see also Krecl et al., (2017). Non-exhaust emissions of PM due to wear of 

brakes, tyres and roads are calculated using the NORTRIP model (Denby et al., 2013) forced by the forecasted meteorology 

from SMHI. Information on shares of studded winter tyres is obtained from manual counting every week during the winter at 

different locations in the city centre and along highways outside of the city. Road traffic emissions are calculated for all roads 

with more than 3000 vehicles per day. Other emission sources included in the local emissions database include shipping, 20 

private and municipal heating (including burning of waste). More information about the Stockholm air quality forecast system 

is provided in Engardt et al. (2021). 

 

2.3 Meteorological forecasts 

As an integral part of the Stockholm air quality forecast system, meteorological forecasts for a point in central Stockholm are 25 

downloaded every morning from SMHI (https://www.smhi.se/data/oppna-data) and MET Norway 

(https://docs.api.met.no/doc/). The meteorological forecasts extend over 10 days and are a combination of output from a 

https://atmosphere.copernicus.eu/
https://www.airviro.com/airviro/
https://www.wikiwand.com/en/Operational_Street_Pollution_Model
https://www.smhi.se/data/oppna-data
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number of regional and global numerical weather prediction models. The combination is based on statistical adjustments as 

well as manual edits. The meteorology is initially used to drive the models of weather-dependent PM emissions and the urban- 

and street canyon air quality modelling. The forecasted meteorological data are, finally, also used as predictors in the ML 

algorithms as detailed below. 

 5 

2.4 Machine learning models 

As already mentioned in the introduction two decision tree based machine learning models, RF and XGB, and one deep 

learning model, LSTM are applied. In addition, an ensemble learning approach based on a General Additive Model (GAM), 

aggregating the above three learning models, is also applied to further optimise the results.  

One essential challenge in this study is to forecast hourly concentrations for the coming one day, two days and three days based 10 

on historical air pollution measurement and other available information as inputs. This indicates that the essential statistical 

prediction involves time series prediction for multiple time steps, for example, 72 time steps for three days prediction. It is 

known that a sequence-to-sequence time series prediction, implemented using LSTM or other recurrent neural networks, 

provides a straightforward and rolling-over computational schemes. Nevertheless, training a machine learning model with 

multiple outputs requires much more computational effort, but often leads to inferior prediction accuracy compared to 15 

relatively simple models with only a single output dedicated for predicting output of a certain time step. Therefore, this study 

chooses, instead of more complex machine learning structure, multiple single-output machine learning models for forecasting 

different air pollutants for k=1 day, 2 day and 3 day interval: 

𝜌̂𝑖,𝑗(𝑑, 𝑡) = mlearn_model (𝜌̃𝑖,𝑗(𝑑 − 𝑘, 𝑡), 𝜌̅𝑖,𝑗
𝑆 (𝑑 − 𝑘, 𝑡), 𝜌̌𝑖,𝑗(𝑑, 𝑡), 𝑊(𝑑, 𝑡), 𝐶(𝑑, 𝑡)  ) 

where 𝜌̂𝑖,𝑗(𝑑, 𝑡) is predicted concentration value of the pollutant j for day d and time t at the location i, and 𝜌̃𝑖,𝑗(𝑑, 𝑡) is the 20 

corresponding real measurement; 𝜌̅𝑖,𝑗
𝑆 (𝑑, 𝑡)  uses a set S to represent several statistical measures, including maximum, 

minimum, 25% quantile and 75% quantile of the measured concentration data during the past 24 hours until 𝜌̃𝑖,𝑗(𝑑, 𝑡), and the 

measurement dataset can be represented by a set, i.e. {𝜌̃𝑖,𝑗(𝑑, 𝑡), 𝜌̃𝑖,𝑗(𝑑, 𝑡 − 1), 𝜌̃𝑖,𝑗(𝑑, 𝑡 − 2). . . . }.  𝜌̌𝑖,𝑗(𝑑, 𝑡) is the one day 

predicted concentration value using deterministic physical model. 𝑊(𝑑, 𝑡) represents the weather condition predicted for day 

d and time t.  25 

Figure 3 demonstrates the prediction horizon and lagged information horizon for the case of one day prediction. To build 

consistent statistical machine learning models with a fixed rolling horizon, a new measurement point at current time (d, t) will 

lead to an additional prediction for one day ahead, i.e. the predicted value at (d+1,t). In the case, the measurement statistics 

𝜌̅𝑖,𝑗
𝑆 (𝑑, 𝑡) will be based on one day preceding measurement data of (d, t), resulting in a lagged rolling horizon described in the 

figure.  30 
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Figure 3. Illustration of the machine learning modelling framework for one-day prediction based on available datasets. 

This study has applied both LSTM and two conventional supervised learning models, RF and XGB, as the essential machine 

learning cores to carry out supervised learning using the same input and output training dataset. In fact, an ensemble approach 

based on all three models is also applied to predict air quality for different days. The conventional models require nontrivial 5 

effort to prepare input feature data as they don’t fit as easily with time series data as RNN. To make a fair comparison with 

both types of models, LSTM model in this case is only based on the same type of input as other two models. It is well known 

that LSTM can learn the temporal correlation of different ranges. Nevertheless, this study applies the data to a simple LSTM 

structure, without taking advantages of its full potential. In principle, the measurement data at (d, t) may provide hourly update 

of predicted values within the prediction horizon i.e. from (d,t+1) to (d+1,t). Nevertheless, it is our future work to extend the 10 

model structure and improve prediction using latest real-time information.  

In addition to the measured air pollution time series data itself, the forecasted meteorological conditions for the prediction day 

d (or d+1 or d+2) and calendar information such as weekday, hour etc. are also applied as input features. Moreover, the air 

pollutant concentrations predicted by the deterministic models is also used as inputs to the ML models. Figure 4 summarizes 

the methodological framework of machine learning and associated computational experiments for air pollution prediction.  15 
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Figure 4. Illustration summarising input data for modelling 1-, 2- and 3-day forecasts of PM10, NOx and O3 using the 4 models.  

  

The input includes the deterministic forecasts of PM10, NOx and O3, to evaluate how much the deterministic forecasts can be 

improved by the ML algorithms. In the computational experiments, data-driven forecasting models are trained for one urban 5 

background site and three street canyon sites separately, and different machine learning models are trained and tested separately 

for predicting various air pollution concentrations coming 1-day (0 – 24 h), 2-day (25 – 48 h) and 3-day (48 – 72 h) periods. 

The dataset is split along the time axis into non-overlapping training, validation, and test data in a ratio of 16:4:5. 

 

Due to the temporal correlation of the air pollutant concentrations, the principal assumption of cross-validation is not satisfied. 10 

To preserve the time-dependent property, “TimeSeriesSplit” was chosen as the cross-validation strategy. In the kth split, it turns 

the first k folds as the training set, and the (k+1)th fold as the test set. The value of parameter k is set as 5. 

 

Table 2 presents detailed explanation of the essential input features that are applied in the computational experiments. All 

machine learning models are implemented in python using existing machine learning libraries including “scikit-learn” and  15 

“tensorflow” (also implemented using “pytorch”) for conventional machine learning models and deep learnings models 

respectively. The detailed implementation can be referred to the code provided.   
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Table 2. Measured and forecasted air pollutant concentrations used as input data (features) in the ML modelling of pollutant 

concentrations at the urban background site (UB) and at the street canyon sites (SC). NOx and PM10 are modelled at both UB and 

SC. Ozone is only modelled at UB. For periodic input data, using sine and cosine values can remove discontinuities and create 

consistent distance measures, thereby improving model accuracy. 

Category Short 

names 

Description 

Deterministic features 

NOx_nday_local 

PM10_nday_local 

n=1, 2, 3 

Deterministic 1-day, 2-day and 3-day forecast of contributions from 

local emissions based on urban scale Gaussian modelling 

NOx_nday_regional 

PM10_nday_regional 

O3_nd_regional 

n=1, 2, 3 

Deterministic 1-day, 2-day and 3-day forecast of contributions based 

from non-local emissions based on CAMS ensemble model (regional 

background) 

Autocorrelation features 

NOx_lagXX 

PM10_lagXX 

O3_lagXX 

XX = 24, 48, 72 

XX hour lagged air pollutant concentrations based on autocorrelation 

and prediction time span. 

 

Statistical features 

NOx_Sta_dXX 

PM10_Sta_dXX 

O3_Sta_dXX 

Sta=avg., median, min, 

max, Q1, Q3 

XX = 24, 48, 72 

Average, median, minimum, maximum, quantiles 1 and quantiles 3 of 

lagged air pollutant concentrations in rolling XX hour periods. 

 

Time features 

Time 

Time_sin 

Time_cos 

Time= year, julianday, 

month, weekday, day, hour 

Julian day of the year (1, 2, 3, … 365), sine and cosine of 2*pi*day/365. 

Day of the week (1, 2, 3, … 7), sine and cosine of 2*pi*day/7. 

Hour of the day (0, 1, 2, … 23), sine and cosine of 2*pi*hour/24.  

Year 

Month 

Day 

Meteorological features 

wind_direction 

wind_direction_cos 

wind_direction_sin 

Wind direction[0, 360) at 10 m in central Stockholm, sine and cosine 

of (2*pi/360)*wind direction 

pressure; temperature; 

precipitation; cloudiness 

Pressure (10 m); Temperature (10 m) 

wind_speed Wind speed (10 m) 

relative_humidity Relative humidity 

boundary_layer_height Boundary layer height for central Stockholm 

 5 

While hyperparameter optimisation may improve the model performance, the improvement is limited in our test experiment 

in comparison to the gain over deterministic model.  The following configurations are applied for the ML models: 

 The two tree-based models use the default parameters of “scikit-learn”. 

 The LSTM model consists of two layers of LSTM, each with 100 neurons, and passed through a fully connected 

layer before the output. The activation function was a “tanh”. 10 

 The LSTM model was trained by Adam optimizer. The batch size is set as 72. The initial learning rate is 0.01 and is 

automatically adjusted using “ReduceLROnPlateau” with the parameter patience set to 10, i.e., training is stopped 

when the loss of the validation set is detected as not decreasing for 10 consecutive epochs. 

 

After the model training process, feature importance is ranked for tree-based models and LSTM models using the mean 15 

decrease in impurity (Breiman, 2001) and gradient-based methods (Baehrens et al., 2010), respectively. It should be noted that 
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the gradients in neural networks depend on both input and output data, the feature importance for the LSTM model was 

computed as the average of feature gradient obtained from all samples in the test set. 

 

2.5 Statistical performance indicators 

Several common performance metrics have been selected for comparing the prediction results of different machine learning 5 

models including Pearson correlation (r) and normalised error measures: mean average error (MAE), mean absolute percentage 

error (MAPE) and root mean squared error (RMSE). These measures have also been recommended for air quality model 

benchmarking in the context of the Air Quality Directive 2008/50/EC (AQD) by Janssen and Thunis (2022). 

 

Mean absolute error: 10 

𝑀𝐴𝐸(𝑦, 𝑦̂) =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖| 

where 𝑦̂𝑖 is the predicted value of the  𝑖-th sample, and 𝑦𝑖  is the corresponding true value for total 𝑛 samples.  

 

Root Mean Square Error: 

𝑅𝑀𝑆𝐸(𝑦, 𝑦̂) = √
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2 15 

MAE and RMSE were normalised by diving by the mean of the measured concentrations, hereafter called nMAE and 

nRMSE.  

 

Mean absolute percentage error: 

𝑀𝐴𝑃𝐸(𝑦, 𝑦̂) =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|

|𝑦𝑖|
 20 

 
Pearson correlation coefficient: 

r(𝑦, 𝑦̂) =
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖̅)(𝑦̂𝑖 − 𝑦̂𝑖̅)

√∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖̅)2√∑  𝑛

𝑖=1 (𝑦̂𝑖 − 𝑦̂𝑖̅)2

 

 
The model quality indicator (MQI): 25 

In order to properly assess model quality it is necessary to consider measurement uncertainty. In the FAIRMODE community, 

the modelling quality indicator (MQI) is used to assess if a model fulfils certain objectives (Janssen and Thunis, 2022). It is 

defined as the ratio between the model bias at a fixed time (i), quantified by the RMSE, and a quantity proportional to the 

measurement uncertainty as: 

 30 
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𝑀𝑄𝐼(𝑖) =  
√1

𝑛
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)
2

𝛽√1
𝑛

∑  𝑛
𝑖=1 𝑈(𝑦𝑖)

2

=
𝑅𝑀𝑆𝐸

𝛽𝑅𝑀𝑆𝑈

 

 

U(yi) is the expanded 95th percentile measurement uncertainty and β is a coefficient of proportionality (Janssen and Thunis, 

2022). The value of β determines the stringency of the MQI and is set equal to 2, allowing thus deviation between modelled 

and measured concentrations as twice the measurement uncertainty. The uncertainty of the measurements (RMSU) was 5 

calculated for the mean of the measurement concentrations as: 

𝑈(𝑦𝑖) = 𝑈𝑟(𝑅𝑉)√(1 −∝2)2(𝑦𝑖
2) +∝2 𝑅𝑉2 

Here 𝑈𝑟(𝑅𝑉) and ∝ are parameters that depend on pollutant and RV is a reference value, here taken to be 200, 50 and 120 µg 

m-3, corresponding 𝑈𝑟(𝑅𝑉) was 0.24, 0.28 and 0.18 and ∝ was 0.25, 0.20, 0.79 for NO2, PM10 and O3 respectively (Janssen 

and Thunis, 2022). In our case we have calculated NOx, not NO2, but we used the same settings of the parameters for NOx as 10 

recommended for NO2. It should be noted that another important source of error when comparing model results with 

measurements is associated with the spatial representativeness of a measurement station for comparison with the model. This 

is due to the mismatch between the model grid resolution and the location of the monitoring station. But in this paper we are 

mainly interested in comparing the results of the deterministic model with the results using the different ML models together 

with the deterministic model output. 15 

3 Results 

The focus of this paper is to compare the deterministic forecasts of NOx, PM10 and O3 with the forecasts based on the different 

machine learners which also include the deterministic forecasts as input variables (features). As described above we have made 

deterministic and ML forecasts for hourly mean concentrations for the coming 72 hours, based on 1-day, 2-day and 3-day 

meteorological forecasts for one urban background site (NOx, PM10 and O3) and three street canyon sites (NOx and PM10). We 20 

also compare results separately for the urban background site and the street canyon sites. 

3.1 Urban background 

3.1.1 Importance of features - urban background 

The relative importance of different features depending on model (RF, XGB and LSTM), pollutant (PM10, NOx, O3) and 

forecast period (1-day, 2-day and 3-day) is shown in plots in Appendix B. It should be noted that the local deterministic models 25 

(Gauss and OSPM) use the same meteorological data to forecast concentrations, so when the meteorological variables are 

important features for the ML models, it indicates that the deterministic models don’t capture all processes related to those 

variables. In summary regarding importance of features for urban background: 
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NOx. Lagged 24-hour mean concentrations, calendar data, wind speed and local deterministic forecasts are among the top-10 

most important variables, but it can be noted that the deterministic forecast is not the most important feature for any model. Of 

the calendar features hour is most important reflecting the importance of regular, diurnal variations in traffic emissions. 

PM10. The regional deterministic forecast is the most important feature for PM10 forecasts, for all models and for all forecast 

days. Also lagged measurements, both average, minimum and maximum concentrations is important. Of the calendar features 5 

the seasonal variation is reflected in the importance of the Julian day. For LSTM also precipitation is important, which likely 

reflects the dependence of suspension of dust on surface wetness not being captured by the deterministic forecasts. 

O3. For O3 the models shows very similar characteristics when comparing relative importance of different features. The 

regional deterministic forecasts is the dominant feature for all forecast days. Also lagged measured maximum concentrations 

is of some importance. The relative humidity is important, likely reflecting that O3 concentrations are typically higher during 10 

dry, clear sky conditions, which may not be completely captured by the deterministic forecasts.  

 

3.1.2 Comparison between deterministic forecasts and ML models - urban background 

Figure 5 shows an example of the temporal variations in September 2021 in the forecasts with deterministic modelling and 

GAM in comparison to the observations. Similar plots are also given for individual models in Figure C1. The plots were made 15 

using the Openair R package (Carslaw and Ropkins, 2012). For all pollutants the ML models tend to improve the variability 

in the observed concentrations compared to the deterministic forecasts, but there are significant deviations. For O3 the 

minimum concentrations observed is often not forecasted so well and for PM10 the highest concentrations is not captured by 

the models.  
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Figure 5. Temporal variations in hourly mean NOx, PM10 and O3 concentrations at the urban background site during September 

2021 based on observations, deterministic forecasts and GAM. Mean of 1-, 2- and 3-day forecasts.  

 

Figure 6 shows example of deviations from observations of forecasted NOx, PM10 and O3 for all models illustrating that during 5 

some hours all models systematically show large absolute deviations from the observed mean concentrations. Sometimes the 

hours with large deviation for NOx coincide with deviations for PM10 indicating some specific meteorological situation or 

common source that cause this deviation.  
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Figure 6. Absolute deviations of forecasted NOx, PM10 and O3 concentrations from observed (Obs) concentrations based on mean of 

1-, 2- and 3-day forecasts for September 2021. All data are hourly mean concentrations. 

Figure C2 shows systematic deviations between the observed mean diurnal variations and the deterministic forecast. This is 

significantly improved using the ML models, especially for NOx and O3. For O3 the deterministic forecast systematically 5 

overestimates the concentrations which is mainly due to the fact that the chemical destruction of O3 in the city centre is not 

properly accounted for by the regional CAMS model. For NOx the concentrations calculated by the deterministic model are 

systematically shifted one hour compared to the observed concentration and this is likely associated with errors in 

parameterisation of traffic emissions, which is the most important source of NOx in Stockholm. For PM10 concentrations 
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modelled by the deterministic model are too low during the night compared to observations, but this is corrected using RF and 

XGB, but not using LSTM. 

 

As can be seen in Table 3 and Figure 7 most of the statistical performance measures are improved compared to the deterministic 

forecasts of NOx and PM10 using different ML models. For NOx Pearson correlation (r) increases from 0.35-0.39 with 5 

deterministic forecasts to between 0.49 and 0.70 when ML models are used. MAPE, nRMSE and nMAE decreases for all 

models and all forecast days. For PM10 Pearson r increases from 0.50-0.53 with deterministic forecasts to between 0.50 and 

0.74 when ML models are used. nRMSE and nMAE decreases for forecast days, but for MAPE results are not so consistent – 

MAPE increases slightly with XGB, RF and GAM, while it decrease for 1-day and 2-day forecasts using LSTM. For O3 there 

are small improvements looking at Pearson r and MAPE, nRMSE and nMAE decreases. The Pearson correlation for O3 is 10 

already relatively high and errors relatively small with the deterministic CAMS modelling.  

Figure 7 presents mean of 1-day, 2-day and 3-day statistical performances as ratios of ML to deterministic forecasts. This 

shows that NOx is consistently improved using all ML models for all statistical performance indexes, whereas for PM10 and 

O3 there are improvements in nRMSE and nMAE, but MAPE. Overall, the difference in performance between different models 

is small, less than 30%, but larger when comparing different pollutants. 15 
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Table 3. Comparison of 1-,  2-, 3-day deterministic and ML forecasts for NOx, PM10 and O3 for the urban background site. r = 

Pearson correlation, MAPE = mean absolute percentage error, nRMSE = normalised rootmean square error and nMAE = 

normalised mean absolute error. All data are based on hourly mean values. Best performances are bold. 

NOx 

 r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.39 0.38 0.35 69% 65% 67% 130% 124% 116% 63% 61% 61% 

XGB 0.49 0.53 0.54 42% 44% 48% 118% 114% 114% 44% 45% 47% 

RF 0.54 0.57 0.60 37% 38% 37% 115% 112% 111% 41% 41% 41% 

LSTM 0.70 0.69 0.66 50% 59% 54% 99% 99% 101% 43% 47% 46% 

GAM 0.50 0.55 0.58 37% 37% 37% 117% 114% 112% 42% 42% 42% 

PM10 

 r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.53 0.50 0.50 54% 56% 59% 81% 85% 87% 47% 48% 50% 

XGB 0.71 0.65 0.56 61% 64% 69% 58% 64% 69% 41% 44% 47% 

RF 0.74 0.65 0.60 55% 74% 78% 56% 63% 66% 39% 45% 46% 

LSTM 0.71 0.57 0.50 47% 54% 60% 62% 73% 79% 42% 49% 53% 

GAM 0.73 0.64 0.59 55% 76% 80% 56% 64% 67% 39% 46% 47% 

O3 

 r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.74 0.71 0.69 45% 49% 50% 31% 32% 32% 24% 25% 25% 

XGB 0.75 0.71 0.67 47% 51% 53% 25% 26% 27% 19% 20% 21% 

RF 0.76 0.69 0.71 47% 54% 52% 24% 26% 26% 19% 21% 20% 

LSTM 0.76 0.74 0.74 46% 47% 51% 24% 25% 25% 19% 20% 20% 

GAM 0.75 0.66 0.69 47% 55% 52% 24% 27% 27% 19% 22% 21% 
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Figure 7. Ratios of statistical performances for ML models versus the deterministic hourly forecasts for the urban site. Mean of 1-

day, 2-day and 3-day forecasts.  

For the general public it is important to receive information on future pollution episodes with high concentrations. The plots 

in Figure D1 shows that statistical performances for all models is worse when concentrations higher than when the mean value 5 

is analysed. Pearson r is somewhat higher for PM10 and O3, but not when RF and XGB is used for NOx. MAPE is reduced for 

PM10 and NOx but not for O3. The nRMSE is both higher and lower with ML models compared to the deterministic model, 

while, finally, nMAE is lower for NOx and PM10 using RF and XGB, but not for PM10 using LSTM.  
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As can be seen in Figure 8 all MQI are below 100% indicating that deviations between model results and measurements are 

smaller than the estimated uncertainties in the measurements. It can also be seen that LSTM is somewhat more efficient in 

reducing MQI, from 68% to 60% for NOx and O3 from 40% to 29%, while RF and XGB provides no improvement for NOx, 

but both PM10 and O3 shows slightly lower MQI with RF and XGB compared to the deterministic forecast.  

 5 

 

Figure 8. MQI based on hourly mean concentrations for the whole test period for NOx, PM10 and O3 of the urban site. Mean of 1-, 

2- and 3-day forecasts. 

 

3.2 Street Canyon sites 10 

3.2.1 Importance of features - street canyon sites 

For the street canyon sites the relative importance of different features is different for PM10 and NOx and also somewhat 

different depending on ML model and street (see figures in Appendix E). There are, however, some typical features that tend 

to be more important. For PM10 Julian day, lagged measurements and deterministic forecasts are mostly among the top 5 most 

important features using RF and XGB, while precipitation is an important feature using LSTM. For NOx deterministic 15 

forecasts, hour of the day and weekday are the most important, while lagged measurements are less useful for the ML models. 

The importance of calendar data for NOx likely reflects importance of diurnal and weekday variations in traffic emissions not 

correctly captured by the deterministic forecast. Julian day likely reflects seasonal variations in non-exhaust emissions of PM10 

and precipitation reflects the importance of street wetness for suspension of road dust. Even though there are variations it is 

difficult see any systematic difference in the features between ML for the different street sites.  20 

 

3.2.2 Comparison between deterministic forecasts and ML models - street canyon sites 

Comparisons between the hourly temporal variations in observations and forecasts of NOx with the GAM model in September 

2022 are shown in Figure 9 and for all models in Appendix F. One can see that the deterministic forecast tend to overestimate 
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concentrations of NOx during daytime especially for Sveavägen and this is corrected when ML modelling is being applied. 

Corresponding plots for PM10 are shown in Figure 10. In this case the GAM overestimates concentrations on Folkungagatan 

and Hornsgatan during the end of September, but performs well otherwise, whereas the deterministic forecast overestimates 

PM10 on Sveavägen and Hornsgatan during the first half of the month.  

 5 

 

 

Figure 9. Temporal variations in hourly mean NOx concentrations at the street canyon sites during September 2022 based on 

observations (red) and 1-day forecasts based on deterministic modelling (blue) and GAM (green).  

 10 
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Figure 10. Temporal variations in hourly mean PM10 concentrations at the street canyon sites during September 2022 based on 

observations, deterministic modelling and GAM forecasts. Mean of 1-, 2- and 3-day forecasts.  

 

The improvement of the temporal variations of NOx and PM10 is well illustrated by comparing the mean diurnal variations in 5 

observations with deterministic modelling and using the ML models, GAM shown in Figure 11 and all models shown in figures 

in Appendix G. For all street sites, both NOx and PM10 concentrations shows systematic deviations from observations using 

deterministic modelling, but this is corrected using the ML models, especially for NOx. The tendency that the LSTM model is 

not as good to capture variations in PM10 at the urban site is also seen here for the street canyon sites.  

 10 
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Figure 11. Mean diurnal variations in hourly mean observations, deterministic and GAM forecasts of NOx and PM10 for the street 

canyon sites. Mean of 1-, 2- and 3-day forecasts. 5 

 

For all streets statistical performance of NOx forecasts are improved using the ML models as shown for all forecasts in Table 

4. The improvement in terms of Pearson correlation (r), MAPE, nRMSE and nMAE is very similar for the ML models but 

differ between streets, with forecasts for Hornsgatan showing higher r and lower relative errors compared to the other streets.  

 10 
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Table 4. Comparison of 1-, 2-, 3-day deterministic and ML forecasts for NOx for the street canyon sites. r = Pearson correlation, 

MAPE = mean absolute percentage error, nRMSE = normalised rootmean square error and nMAE = normalised mean absolute 

error. All data are based on hourly mean values. 

Folkungagatan 

 r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.48 0.49 0.47 107% 118% 120% 108% 109% 106% 72% 73% 73% 

XGB 0.65 0.64 0.63 67% 73% 76% 74% 75% 75% 47% 50% 50% 

RF 0.66 0.65 0.65 64% 73% 81% 71% 74% 77% 45% 49% 53% 

LSTM 0.64 0.61 0.62 65% 60% 79% 72% 74% 74% 46% 46% 50% 

GAM 0.66 0.65 0.65 65% 75% 81% 73% 75% 77% 46% 51% 53% 

Sveavägen 

 r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.46 0.53 0.44 159% 161% 163% 137% 136% 134% 99% 98% 97% 

XGB 0.69 0.68 0.66 59% 57% 59% 68% 69% 71% 41% 41% 41% 

RF 0.73 0.73 0.73 51% 51% 50% 65% 65% 65% 37% 38% 37% 

LSTM 0.71 0.69 0.66 58% 60% 64% 68% 69% 71% 41% 41% 43% 

GAM 0.72 0.71 0.71 52% 51% 49% 65% 67% 66% 38% 39% 37% 

Hornsgatan 

 r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.53 0.56 0.55 80% 69% 73% 82% 79% 80% 55% 52% 54% 

XGB 0.80 0.81 0.81 45% 45% 44% 52% 51% 50% 32% 32% 32% 

RF 0.79 0.79 0.81 42% 43% 43% 52% 53% 50% 31% 32% 31% 

LSTM 0.77 0.76 0.76 48% 51% 51% 57% 57% 56% 36% 36% 36% 

GAM 0.80 0.80 0.82 42% 43% 43% 51% 51% 50% 31% 32% 31% 

 

Figure 12 clearly illustrates the improvements of all statistical performance indexes for NOx at all street canyon sites and for 5 

ML models. The errors (MAPE, nRMSE, nMAE) are reduced by between 30% and 60% and the Pearson correlation 

coefficients increase by between 30% and 50%.  
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Figure 12. Ratios of statistical performances for ML models versus the deterministic hourly forecasts for NOx at the street canyon 

sites. Mean of 1-day, 2-day and 3-day forecasts. 

 

Comparison between the statistical performance measures for ML models and deterministic forecasts for PM10 shows 5 

somewhat variable results depending on statistical measure, street and ML. Person r values increase slightly in most cases and 

the normalised RMSE and MAE are lower for most ML models and streets, but not always, while MAPE often increase using 

the ML models (Table 5 and Figure 13). Errors measured as nRMSE decrease by between 10% and 30%, whereas errors 

measured as MAPE mostly increase slightly and nMAE is about unchanged. Pearson r increase at Folkungagatan for all ML 

models (10% - 30%) but show somewhat varying results for Sveavägen and Hornsgatan.  10 
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Table 5. Comparison of 1-, 2-, 3-day deterministic and ML forecasts for PM10 for the street canyon sites. r = Pearson correlation, 

MAPE = mean absolute percentage error, nRMSE = normalised rootmean square error and nMAE = normalised mean absolute 

error. All data are based on hourly mean values. 

Folkungagatan 

 
r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.32 0.30 0.34 121% 112% 119% 115% 116% 115% 56% 57% 56% 

XGB 0.41 0.30 0.34 122% 134% 121% 85% 102% 83% 52% 63% 54% 

RF 0.36 0.39 0.41 134% 121% 129% 89% 82% 75% 52% 52% 49% 

LSTM 0.47 0.43 0.34 102% 115% 141% 82% 77% 83% 58% 53% 58% 

GAM 0.37 0.34 0.39 132% 123% 127% 88% 95% 77% 52% 57% 50% 

Sveavägen 

 
r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.42 0.40 0.40 98% 100% 95% 92% 92% 92% 55% 56% 54% 

XGB 0.42 0.31 0.45 122% 124% 109% 76% 92% 73% 51% 58% 49% 

RF 0.49 0.27 0.40 113% 125% 114% 67% 99% 74% 45% 57% 50% 

LSTM 0.51 0.49 0.46 90% 106% 109% 67% 67% 68% 47% 48% 49% 

GAM 0.45 0.28 0.41 115% 121% 111% 71% 93% 75% 46% 56% 49% 

Hornsgatan 

 
r MAPE nRMSE nMAE 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

Det 0.40 0.36 0.30 81% 80% 87% 113% 116% 118% 59% 60% 62% 

XGB 0.46 0.30 0.37 84% 103% 91% 89% 110% 89% 56% 67% 59% 

RF 0.42 0.21 0.33 85% 115% 94% 91% 130% 90% 57% 73% 59% 

LSTM 0.49 0.40 0.34 77% 84% 93% 82% 85% 89% 56% 59% 64% 

GAM 0.45 0.25 0.34 84% 107% 92% 88% 114% 89% 56% 68% 58% 

 5 
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Figure 13. Ratios of statistical performances for ML models versus the deterministic hourly forecasts for PM10 at the street canyon 

sites. Mean of 1-day, 2-day and 3-day forecasts. 

 

As pointed out before it is important to assess statistical performance measures for periods with high concentrations. Similar 5 

to what is seen for the urban site the statistical performances for all models are much worse for the hourly mean concentrations 

that are higher than the mean values and the pattern is also similar for the different streets. 
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3.2.3 MQI street canyon sites 

Figure 14 illustrates that deviations between model results and measurements compared to the uncertainties of the 

measurements for all pollutants and street canyon sites. For NOx relative uncertainties decreases using the ML models 

compared to the deterministic forecast, while for PM10 results varies, but there is no systematic improvement using ML models 

compared to the deterministic model. 5 

 

Figure 14. MQI for NOx and PM10 forecasts at street canyon sites. Mean values for 1-, 2- and 3-day forecasts. 

 10 
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3.3 Generalisation of street canyon modelling 

Until now, the model performance is evaluated using training and testing data from three single sites respectively. In Stockholm 

as well as in other cities most of the streets do not have any monitoring station. This is of course due to resource constraints 

but also associated with the fact that the EU Air Quality Directives regulates the number of monitoring sites required in a city 

depending on the level of air pollution and number of inhabitants. The monitoring stations should provide information for both 5 

areas where the highest concentrations of air pollutants occur and other areas that are representative of the exposure of the 

general population. Less resources is required if this information can be achieved by accurate enough modelling. 

We therefore analyze the generalization capacities of the models, with the expectation that we can achieve certain prediction 

performance of one site without having any measurement data. Computational experiments were carried out through cross-

validation, which combines training and testing data coming from different measurement sites. For the street canyon sites, four 10 

combinations of training datasets were applied to evaluate the generalization abilities of different ML models.  

 

Figure 15 shows mean of 1-day, 2-day, and 3-day forecasted NOx concentrations for the three street canyon sites based on 

training the models on the other streets. It shows that the forecast is improved compared to the deterministic forecast for 

Hornsgatan and Sveavägen, but not so much for Folkungagatan. For Hornsgatan the correlation is 0.55 using the deterministic 15 

forecast whereas the ML models gives correlations between 0.61 and 0.67 and all errors decrease slightly using the ML models. 

For Sveavägen the correlation is 0.48 using the deterministic forecast whereas the ML models gives correlations between 0.62 

and 0.63 and here all errors decrease substantially using the ML models. But for Folkungagatan the ML models show different 

results. Correlations are similar or even decreases, whereas errors mostly decreases depending on ML applied.  

 20 
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Figure 15. Statistical performances of NOx forecasts for the streets when the ML models are trained using only data from the other 

streets. Mean of 1-day, 2-day, and 3-day forecasts.  

 

Figure 16 shows mean of 1-day, 2-day, and 3-day forecasted PM10 concentrations for the three street canyon sites based on 5 

training the models on the other streets. It can be seen that it is not possible to find any systematic improvement of the 

deterministic forecast for the streets using RF and XGB compared to the deterministic forecasts. But with LSTM correlations 

increase slightly and errors decrease at all streets compared to the deterministic forecasts.  
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Figure 16. Statistical performances of PM10 forecasts for the streets when the ML models are trained using only data from the other 

streets. Mean of 1-day, 2-day, and 3-day forecasts. 

 

4 Discussion   5 

The performance of the ML models are quite similar for the different sites and forecast days. But there are large differences in 

improvements for different pollutants. In general, our results indicate that ML models are more effective in improving NOx 

than PM10 and O3. For PM10 the ML models show slight improvement in r but not much improvements in relative errors. This 
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difference in improvement is likely associated with the different processes controlling the concentrations, such as different 

sources: NOx concentrations being mainly due to vehicle exhaust emissions which shows regular variations from one day to 

the next depending on day of the week and time of day, while PM10 is mainly due to road dust emissions controlled by a 

combination of variations in vehicle volumes and meteorological conditions that affect suspension of coarse particles from 

street surfaces (e g Denby et al., 2013a; Johansson et al., 2007; Krecl et al., 2021). Road dust is accumulated on the road 5 

surfaces during wet road surface conditions and suspended by vehicle induced turbulence during dry conditions (Denby et al., 

2013a).  

The improvement of the forecasts of NOx with ML is partly driven by the calendar, hour, day of the week and to some degree 

also Julian day, but different features appear as important for RF compared to XGB. For PM10 the seasonal variation described 

by Julian day is the most important feature at the street canyon sites, both for RF and XGB. This indicates that the deterministic 10 

forecasts is not capable at describing impacts of meteorology and road dust emissions on PM10, even though parameterisations 

of these processes are included in the deterministic modelling system. The total mass generated by road wear is a key factor 

for PM10 emissions and these emissions are strongly controlled by surface moisture conditions and this is taken into account 

by the NORTRIP model. But as pointed out by Denby et al (2013b) there are periods where surface wetness is not well 

modelled and it is not known if this is the result of input data, e.g. precipitation, or of the model formulation itself.  15 

It is clear that the deterministic forecast of O3 underestimates concentrations at the urban site due to the fact that the local 

emissions of NOx influencing the photochemistry is not properly considered by the CAMS model, but this is corrected using 

the ML models. Despite this the deterministic forecast is the most important feature for both RF and XGB but also lagged 

measured mean and maximum O3 concentrations improve the deterministic forecasts. 

Despite the fact that the configurations and traffic situations are quite similar for the street canyon sites, the improvements of 20 

the deterministic forecasts using ML differs. For NOx forecasts on Hornsgatan are more accurate (lower errors and higher r) 

than for the other two sites, while for PM10 there is no obvious difference between the sites.  

The overall model quality according to the recommendations by the Forum for Air Quality Modeling (FAIRMODE) in the 

context of the air quality directives, is improved using the ML models resulting in uncertainties that are significantly smaller 

than the measurement uncertainties for all pollutants. But the forecasts of the highest concentrations including episodes with 25 

high concentrations, is not systematically improved for all pollutants and all statistical performance measures using the ML 

models.  

We have shown that the statistical performances of the deterministic forecasts for concentrations of NOx at the street canyon 

sites can be improved using the ML models. But for PM10 only LSTM showed systematic improvements at all sites. So again 

this accentuates the importance of testing the models not only for one pollutant. Further work is needed to improve 30 

deterministic forecasts of PM10 based on the training of ML models at a few monitoring stations. As discussed above the 

situation in Stockholm is different from cities in central and southern Europe since the road dust contribution is very large. It 

might be that results for PM10 is different in other cities, but we have not found any publication on this matter.  
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4.1 Comparison of different ML models 

Several studies have compared performance of different machine learners for predicting air quality (Zaini et al., 2021). 

Assessing forecasts of PM10 and PM2.5 concentrations, Czernecki et al. (2021) found that XGB performed the best, followed 

by random forests and an artificial neural network model, while stepwise regression performed the worst in four Polish 

agglomerations. Likewise, Joharestani et al. (2019) found XGB to performed best of three ML models (XGB, RF and a deep 5 

learning algorithm), in predicting PM2.5 in Tehran (Iran). On the contrary, LSTM was shown to outperform XGBoost for 

forecasting hourly PM2.5 concentrations (Qadeer et al., 2020), similar to what was shown by Chuluunsaikhan et al (2021). Cai 

et al. (2009) obtained more accurate predictions of CO concentrations using artificial neural network modelling compared to 

using multiple linear regression and the deterministic California line source dispersion model. On the other hand Shaban et al. 

(2015) concluded that a tree based algorithm (M5P) outperformed artificial neural network modelling when comparing 10 

forecasts of different pollutants in Qatar. There may be many reasons for the different results presented in the literature, 

including different types of input data, different atmospheric conditions and source contributions governing the concentrations. 

Also different statistical measures of performance has been used. This makes it hard to draw general conclusions regarding 

which model to use. However, we find that other factors may be more important to consider than type of model – such as 

sources of pollutants and influence of photochemistry, characteristic of the site resulting in different features being of varying 15 

importance depending on pollutant type of location. In this context RF and XGB can provide useful output on the importance 

of features that is not possible using LSTM.  

Another more practical aspect to consider when comparing the ML models is the complexity and computer resources required 

for training the models. In AQ literature, deep learning models such as standard LSTM and other Recurrent Neural Networks 

(RNNs) have been explored for their prediction capacities. However, most of the studies have adopted complex neural network 20 

structures, such as models of multiple outputs that mainly give convenience for data processing and automated feature 

handling. Nevertheless, training even a simple LSTM model is computationally much more expensive than the two 

conventional machine learning models, i.e. the decision tree based models (RF and XGB) in our case. In fact, we have to resort 

to the high performance machine (The Swedish Berzelius High-performance Computer) to reduce the computational time. For 

the current practice in our real air quality prediction system, we prefer the two tree-based models over LSTM. But this doesn’t 25 

deny the possibility that well-designed deep learning models may replace the conventional machine learning models being 

adopted in the AQ system in near future, especially when the amount of data increases. 

 

5 Conclusions 

We have applied different machine learning algorithms to improve 1-, 2- and 3-day deterministic forecasts of NOx, PM10 and 30 

O3 concentrations for a number of locations in Stockholm, Sweden. It is shown that degree of improvement of deterministic 

forecasts depend more on pollutant and monitoring site than on what ML algorithm is applied. Deterministic forecasts of NOx 
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are improved at all sites, using all models. Pearson correlations increase by up to 80% and errors are reduced by up to 60%. 

For PM10 more variable results are seen likely reflecting the more complicated processes controlling the road wear emissions 

which constitute a large fraction of PM10. For O3 at the urban background site deviation between deterministically modelled 

absolute level is correct using the ML models, nRMSE and nMAE is reduced by on average around 20%, but there is almost 

no improvement in the correlation and MAPE.  5 

We have shown that it is possible to improve deterministic forecasts of NOx at street canyon sites, based on training ML models 

at other sites. But when tested for PM10 only LSTM showed some improvements of the statistical performances compared to 

the deterministic forecast of PM10.  

A strength of our study is that we compare forecasts based on several pollutants and base our forecasts on a combination of 

deterministic models (that are based on the underlying physicochemical mechanisms responsible for the emissions and 10 

dispersion of the pollutants) and 3 different machine learning algorithms with additional variables such as measurement data, 

calendar data and meteorological data. And this method is evaluated at different sites and for different pollutants during several 

months with different meteorological conditions.  

There is still room for improvements of this work like e g fine tuning of the models, including and excluding features, 

expanding to other sites and making maps of spatial concentrations over a larger area. 15 
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6 Appendix A. Description of measurement methods and sites. 

All measurement methods are approved for monitoring according to the EU air quality directive for NOx, O3 and PM10. PM10 

was measured either using an optical particle counter (Hornsgatan: OPC, Grimm EDM 180-MC) or Tapered Element 

Oscillating Microbalance (Sveavägen, Folkungagatan and Urban: TEOM model, 1400AB, Rupprecht & Patashnik, Co). NOx 

was measured using chemiluminescence (AC32M, Environnement S.A.) and O3 was measured by UV absorption (O342M, 5 

Environnement S.A.).  

 

Table A1. Description of monitoring sites. 

Site name Description Traffic volume Photo 

Hornsgatan Street canyon site. Measurements of 

NOx and PM10 on north side of street, 

3 m above ground. Street width 24 m 

and building height 24 m. 

23 000 veh/day (4% 

heavy duty vehicles). 

Vehicle composition 

measured during 4 week 

campaigns using 

automatic number plate 

recognition. 

 
Sveavägen Street canyon site. Measurements of 

NOx, PM10 on west side of street, 3 m 

above ground. Street width 33 m and 

building height 24 m. 

21 000 veh/day (7% 

heavy duty vehicles). 
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Folkungagatan Street canyon site. Measurements 

NOx, PM10 on west side of street, 3 m 

above ground. Street width 24 m and 

building height 24 m. 

12 000 veh/day (18% 

heavy duty vehicles). 

 
Torkel 

Knutssongatan 

Urban background. Measurements of 

NOx, PM10, ozone and meteorology 

on top of a 20 m high building.  

Ca 13 000 vehicles on 

Hornsgatan road 250 m N 

of site. 
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7 Appendix B Importance of features – urban background 

      
 

 
 5 

 

Figure B1.Most important features for NOx forecasts using XGB, RF and LSTM at the urban site 
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Figure B2. Most important features for PM10 forecasts using XGB, RF and LSTM at the urban site. 

 5 
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Figure B3. Most important features for O3 forecasts using XGB, RF and LSTM at the urban site. 
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8 Appendix C. Temporal variations in hourly mean O3, NOx and PM10 concentrations at the urban background 

 

Figure C1. Temporal variations of deterministic and ML forecasted NOx, PM10 and O3 concentrations together with 

corresponding measured concentrations at the urban background site for September 2021. Mean of 1-, 2- and 3-day forecasts. 

 5 
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Figure C2. Mean diurnal variations in measured and forecasted concentrations of NOx, PM10 and O3 at the urban site. Mean of 

1-, 2- and 3-day forecasts for August – December 2021.  

 

  5 
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Appendix D. Statistical performance measures for forecasts higher than the hourly mean concentrations at the urban 

site. 

 
Figure D1. Statistical performance measures for concentrations of NOx, PM10 and O3 higher than the hourly mean value at the 

urban site. Mean of 1-, 2- and 3-day forecasts. 5 
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9 Appendix E. Importance of features – Street canyon sites 

  

 
Figure E1. Most important features (%) for PM10 forecasts using RF, XGB and LSTM at Folkungagatan. 
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Figure E2. Most important features (%) for PM10 forecasts using RF, XGB and LSTM at Hornsgatan. 
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Figure E3. Most important features (%) for PM10 forecasts using RF, XGB and LSTM at Sveavägen. 
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Figure E4. Most important features (%) for NOx forecasts using RF, XGB and LSTM at Folkungagatan. 

 

  5 
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Figure E5. Most important features (%) for NOx forecasts using RF, XGB and LSTM at Sveavägen. 
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Figure E6. Most important features (%) for NOx forecasts using RF, XGB and LSTM at Hornsgatan. 
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10 Appendix F. Temporal variations in hourly mean O3, NOx and PM10 concentrations at the street canyon sites 

 

Figure F1. Temporal variations of hourly deterministic and ML forecasted NOx concentrations together with corresponding 

measured concentrations at street canyon sites for September 2021. Mean of 1-, 2- and 3-day forecasts. 
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Figure F2. Temporal variations of hourly deterministic and ML forecasted PM10 concentrations together with corresponding 

measured concentrations at the street canyon sites for September 2021. Mean of 1-, 2- and 3-day forecasts. 
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11 Appendix G. Mean diurnal variations in hourly mean observations, 1-day, 2-day and 3-day deterministic and ML 

forecasts of NOx and PM10 for the street canyon sites. 

 

Figure G1. Mean diurnal variations in measured and forecasted concentrations of NOx and PM10 at the street canyon sites. 

Mean of 1-, 2- and 3-day forecasts for August – December 2021.Shaded areas are 95% confidence intervals. 5 
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12 Appendix H. Statistical performance measures for forecasted hourly mean concentrations higher than the mean 

values at the street canyon sites. 

 

Figure H1. Statistical performance measures for forecasted NOx and PM10 hourly mean concentrations higher than the mean 

values at Hornsgatan. Mean of 1-, 2- and 3-day forecasts. 5 
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Figure H2. Statistical performance measures for forecasted NOx and PM10 hourly mean concentrations higher than the mean 

values at Folkungagatan. Mean of 1-, 2- and 3-day forecasts. 

 

 5 
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Figure H3. Statistical performance measures for forecasted NOx and PM10 hourly mean concentrations higher than the mean 

values at Sveavägen. Mean of 1-, 2- and 3-day forecasts. 

 

 5 
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