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Abstract. Carbon monoxide (CO) is an air pollutant that plays an important role in atmospheric chemistry and is mostly

emitted by forest fires and incomplete combustion in for example road transport, residential heating, and industry. As CO is

co-emitted with fossil fuel CO2 combustion emissions, it can be used as a proxy for CO2. Following the Paris agreement, there

is a need for independent verification of reported activity-based bottom-up CO2 emissions through atmospheric measurements.

CO can be observed daily at global scale with the TROPOMI satellite instrument with daily global coverage at a resolution5

down to 5.5x7 km2. To take advantage of this unique TROPOMI dataset, we develop a cross-sectional flux-based emission

quantification method that can be applied to quantify emissions from a large number of cities, without relying on computation-

ally expensive inversions. We focus on Africa as a region with quickly growing cities and large uncertainties in current emission

estimates. We use a full year of high-resolution WRF-simulations over three cities to evaluate and optimize the performance of

our cross-sectional flux emission quantification method and show its reliability down to emission rates of 0.1 Tg CO yr-1. Com-10

parison of the TROPOMI-based emission estimates to the DACCIWA and EDGAR bottom-up inventories shows CO emission

rates in northern Africa are underestimated in EDGAR, suggesting overestimated combustion efficiencies. We see the opposite

when comparing TROPOMI to the DACCIWA inventory in South Africa and Côte d’Ivoire, where CO emission factors appear

to be overestimated. Over Lagos and Kano (Nigeria) we find that potential errors in the spatial disaggregation of national emis-

sions cause errors in DACCIWA and EDGAR, respectively. Finally, we show that our computationally-efficient quantification15

method combined with the daily TROPOMI observations can identify a weekend effect in the road transport-dominated CO

emissions from Cairo and Algiers.

1 Introduction

Carbon monoxide (CO) is an air pollutant that is mostly emitted by anthropogenic sources. It is a product of incomplete com-

bustion in for example road transport, residential heating, industry and forest fires (Zhong et al., 2017). CO is a precursor20

of ozone, and because it reacts with the hydroxyl radical (OH) its presence effectively increases the atmospheric lifetime of

methane (Daniel and Solomon, 1998; Jacob, 1999; Wuebbles and Hayhoe, 2002). The concentration of CO is therefore im-
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portant for climate modelling. Furthermore, as many processes that emit CO also emit carbon dioxide (CO2), knowledge of

CO emission rates can provide additional information about CO2 emissions (Wu et al., 2022; Park et al., 2021). The Inter-

governmental Panel on Climate Change (IPCC) identified a need for independent verification of the reported greenhouse gas25

emissions through measurements (IPCC, 2019). From space this is challenging for CO2 as its long atmospheric residence time

results in high background concentrations, making it hard to detect emissions. For this reason, measuring the ’short lived’ CO

can be a useful alternative (Silva et al., 2013; MacDonald et al., 2023). We present a method to quantify CO emission rates

over cities in Africa using TROPOMI satellite observations.

30

As transport (23%) and residential heating (35%) are key contributors to total anthropogenic CO emissions (Zhong et al.,

2017), cities are an important source of CO. In Africa, the contributions of transport and residential heating are estimated at

27% and 38% of anthropogenic CO emissions respectively in the DICE-Africa inventory (Marais and Wiedinmyer, 2016) and

17% and 72% in the DACCIWA inventory (Keita et al., 2021). The importance of these two sectors is further confirmed by a

large number of ground-based measurements specifically aimed at traffic (Diab et al., 2005; Lindén et al., 2008; Zakari et al.,35

2020; Doumbia et al., 2021) and domestic heating (Havens et al., 2018; Kansiime et al., 2022; Saleh et al., 2023) that show

CO concentrations in African cities exceeding air quality guidelines by the World Health Organisation. Urbanisation scenarios

predict a growth in both the number of mega-cities and their populations, leading to larger emission rates and increased health

risks. Africa is predicted to have a large urbanisation rate in the coming years. Hoornweg and Pope (2017) predict the continent

to house five of the ten largest cities by 2100, compared to one of ten today. Africa is also a region for which relatively large40

uncertainties are present in emission inventories as only a few are dedicated to the region (Keita et al., 2021). Current emission

inventories are based on so called bottom-up methods where emissions are estimated by combining activity data (e.g. national

fuel consumption statistics) with emission factors and spatially distribute the emission estimates using proxies like population

density (Janssens-Maenhout et al., 2019). These bottom-up methods are also used to report country-level greenhouse emission

estimates to the United Nations Framework Convention on Climate Change (UNFCCC). However, lack of detailed data results45

in large uncertainties (Macknick, 2011; Cai et al., 2019; Oda et al., 2019).

Independently of bottom-up methods, emissions can also be estimated by top-down methods where atmospheric concentra-

tions are measured and used to infer the corresponding emission rates. Multiple studies have investigated urban CO emissions

using ground-based measurements (Badarinath et al., 2007; McKain et al., 2012; Bi et al., 2022). Many studies have also shown50

the capability of satellite measurements for this specific task (Borsdorff et al., 2020; Tian et al., 2022a; Plant et al., 2022; Wu

et al., 2022). For CO, the TROPOspheric Monitoring Instrument (TROPOMI) on ESA’s Sentinel 5 precursor satellite is of

particular interest (Veefkind et al., 2012). It was launched in 2017 and provides daily global coverage with a resolution of 5.5

by 7 km2, which makes it suited to investigate city emissions worldwide.

55

An advantage of polar-orbiting satellites is their ability to monitor the entire globe. However, most satellite-based studies of

CO so far have focused either on regional inversions (Yumimoto et al., 2014; Qu et al., 2022) or on trends in concentrations
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(Lama et al., 2019; Park et al., 2021; Hedelius et al., 2021), while only a few studies have tried to quantify emissions from

individual cities or point sources (Dekker et al., 2017; Borsdorff et al., 2020). These urban emission quantifications use at-

mospheric inversions, which require computationally expensive high-resolution simulations with Chemical Transport Models60

(CTMs). Although inversions are able to get relatively accurate emission estimates, they are difficult to apply to a large number

of sources. To take full advantage of the TROPOMI data, we adjust the mass balance Cross-Sectional Flux (CSF) method,

originally developed for high-resolution point-source quantifications, to be used with TROPOMI data over urban areas. After

evaluating the method using atmospheric transport simulations, we use it to estimate emissions from the largest cities in Africa.

65

2 Data & Methods

This section describes the different data products used in development of the Cross-Sectional Flux method and the simulations

that were used to calibrate the model and evaluate its performance using an Observing System Simulation Experiment (OSSE).

An OSSE is an experiment where a model or method is applied to synthetic data to evaluate the benefit of using this data and/or

method. Which for this work means evaluating whether the CSF can be used to correctly estimate emissions from TROPOMI-70

like synthetic data. Figure 1 shows the roles of the different data products that are used and further described in Section 2.1 to

2.6. In addition, in Section 2.6 we show that the CSF method can be successfully applied to simulated data.
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Figure 1. Schematic description of the use of the different data products within the OSSE and the subsequent emission quantification using

TROPOMI data. The data products are discussed in the Section 2.1-2.6. First, the CSF is applied to simulated synthetic plumes in order

to determine appropriate values for the various parameters used in our method. Second, an effective wind is calibrated by using the known

emission rates of the simulated plumes following the procedure by Varon et al. (2018). The CSF, now calibrated on the synthetic plumes, is

subsequently applied to satellite data to estimate emission rates of African cities.

2.1 TROPOMI carbon monoxide data product

TROPOMI provides total column carbon monoxide concentrations with daily global coverage at 13:30 local time using the

shortwave-infrared band (SWIR) at 2305–2385 nm (Veefkind et al., 2012). From the spectral signal, the CO concentration75

is inferred using the shortwave-infrared CO retrieval (SICOR) algorithm (Borsdorff et al., 2018). We use three years of data

(2019-2021) from the operational data product (Landgraf et al., 2018). To assure high quality data, all pixels with a TROPOMI

quality flag below 0.7 are removed, leaving data that are cloud-free or only have low altitude clouds. The CO concentration over

cloud-free water surfaces is difficult to retrieve, due to the low intensity of reflected light, therefore, we only use observations

with a quality flag equal to 0.7 (low altitude clouds) over water. The resulting dataset shows good agreement with ground-based80

measurements, with a mean difference per station of 2.45± 3.38% to the unscaled Total Carbon Column Observing Network

(TCCON, (Wunch et al., 2011)) columns and 6.5± 3.54% to the Infrared Working Group of the Network for the Detection of

Atmospheric Composition Change (NDACC-IRWG) measurement stations (Sha et al., 2021).
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2.2 EDGAR and DACCIWA bottom-up inventories

We use two different bottom-up inventories to compare the TROPOMI emission estimates with: the Emissions Database85

for Global Atmospheric Research (EDGAR) version 5 (Oreggioni et al., 2021) and the Africa-focused Dynamics-Aerosol-

Chemistry-Cloud Interactions in West-Africa (DACCIWA) inventory (Keita et al., 2021). These inventories are also used in

our atmospheric transport simulations (Section 2.3) to simulate TROPOMI observations. Both inventories provide yearly grid-

ded emission rates at 0.1◦ resolution up to 2015. Due to its global scope, the EDGAR inventory relies mostly on international

statistics and spatial proxies combined with national data while its emission factors are based on IPCC methodology for green-90

house gases (Eggleston et al., 2006) and the EMEP/EEA emission inventory guidebook for air pollutants (Nielsen, 2013). The

DACCIWA inventory provides emission rates over the African continent, ranging from -35 to 38◦ latitude and −25.5 to 63.5◦

longitude. It uses similar international data but is supplemented by local measurements of emission factors and data from local

authorities (Keita et al., 2021). As the DACCIWA inventory characterizes emission from fewer (sub)sectors than EDGAR, we

merge different sectors in EDGAR to match those used in the DACCIWA inventory to make them intercomparable. When95

reporting urban emissions from EDGAR and DACCIWA, we sum emissions over the pixel closest to the city center, its 8

neighbours and all directly attached pixels where the population density exceeds the surroundings by 1.8 standard deviation.

Changing the city mask to 0.3x0.3◦ or 0.7x0.7◦ boxes changes the emissions by 10-20% for 17 out of 29 cities in EDGAR

and 16 out of 29 cities in DACCIWA. Although larger deviations up to 50% in densely populated areas like South Africa are

observed, the observed patterns discussed in Section 3 are valid for these masks as well.100

2.3 WRF chemical transport model

To test and calibrate our emission quantification approach we apply our CSF method to simulated TROPOMI data for three

urban areas. We use the Weather Research and Forecasting (WRF) chemical transport model version 4.1 (Powers et al., 2017),

to simulate column CO mixing ratios over Cairo (Egypt), Bamako (Mali) and Lagos (Nigeria) for 2019, using December 2018

as spin-up month. These three African cities form a diverse set, with Cairo next to the Nile river, Bamako at the boundary of the105

Sahara desert and Lagos at the coast of the Atlantic Ocean. We simulate CO as an inert tracer and drive the simulations with

meteorological fields from the National Centre for Environmental Prediction (NCEP, 2000). All simulations have three-layer

nested domains where the outer domain covers 2673x2673 km2 at a resolution of 27 km; the middle and inner domain cover

891x891 km2 at 9 km resolution and 315x315 km2 at 3 km resolution respectively (Fig. 2). Initial and 6-hourly boundary con-

ditions to capture the background CO are taken from the Copernicus Atmosphere Monitoring Service (CAMS) at 0.25◦x0.25◦110

resolution, (Inness et al., 2015). The resulting background is scaled to match the mean background observed by TROPOMI

over the full year. We use emissions from the global Emissions Database for Global Atmospheric Research (EDGAR) version

5 and the Africa-focused Dynamics-Aerosol-Chemistry-Cloud Interactions in West-Africa (DACCIWA) inventory distributed

across the vertical model levels according to the sector specific vertical profiles provided by Bieser et al. (2011). Typical injec-

tion heights for CO emissions from transport and the residential sector are 0-20 m, while emissions from industry are typically115

injected into the atmosphere at 100-200 m (Bieser et al., 2011). City-specific hourly, daily and monthly temporal profiles for
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each emission sector are taken from Guevara et al. (2021). To maintain flexibility over model output the different sectors in

the emission inventories (19 for EDGAR and 6 for DACCIWA) are simulated separately. We sample the model output (at the

TROPOMI overpass time) to facilitate comparison to the TROPOMI carbon monoxide data as discussed in detail in Section

2.6.120

While EDGAR and DACCIWA only include the primary production of CO, the concentrations observed by TROPOMI

include CO from secondary production as well. CO is produced by oxidation of volatile organic compounds (VOC) with

methane as main contributor (Rozante et al., 2017). Mixing ratios of non-methane volatile organic compounds (NMVOC)

observed in urban locations are typically of the order of 10−3 − 10−2[NMVOC]/[CO] (Von Schneidemesser et al., 2010).

Dekker et al. (2019) showed that chemical production of CO by methane and NMVOC over cities only contribute 4% to the125

total CO signal, justifying the simulation of CO as an inert tracer in our approach. Due to the 10 year atmospheric lifetime of

methane, its contribution to CO production will result in a uniform concentration (Park et al., 2013), that is subtracted with

the background. NMVOC have lifetimes of 0.6-10 days (Guo et al., 2007) that are much shorter than the lifetime of CH4,

but due to their low urban mixing ratios (∼ 1%) their effect on the estimated emission rate is much smaller than the reported

uncertainty of the CSF. This is consistent with the observation that the emission estimates of individual transects (that span a130

timescale of up to ∼ 10 hours) are stable and do not increase with increasing distance from the city (Section 2.4).

Figure 2. Domain setup of the WRF simulations over Cairo (Egypt), Bamako (Mali) and Lagos (Nigeria). The inner domain (red) spans

315x315 km2 around the city at 3 km resolution. The middle (black) and outer (full figure) domain cover 893x893 km2 and 2673x2673 km2

at 9 and 27 km resolution respectively. All panels show the emission rates from the DACCIWA inventory.

2.4 Cross-Sectional Flux method

The Cross-Sectional Flux method (CSF) has been shown to be an effective way to quantify emission rates of plumes observed

by satellites (Varon et al., 2018, 2020; Sadavarte et al., 2021b; Tian et al., 2022b). It is based on the continuity equation which
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relates the flux through a closed surface to the associated emission rate:135

Q=

∮
U⊥∆ΩdA, (1)

where Q [kg s-1] is the emission rate, U⊥ [m s-1] is the wind speed perpendicular to the closed surface, ∆Ω [kg m-3] is the

enhancement at the closed surface and dA [m2] is a surface element. As illustrated in Fig. 3A, the plumes have a distinct

direction as they move with the wind, they are very directional and it suffices to integrate over perpendicular transects that

cover the entire plume-width (Fig. 3B). Equation 1 can then be rewritten as:140

Q=

∫
U⊥(x,y)∆Ω(x,y)dy, (2)

with x,y coordinates along and perpendicular to the plume respectively as in Varon et al. (2018). Assuming a constant emission

rate, transects at different distances downwind of the source should yield the same emission quantification and can be averaged

to make the method more robust.

145

We then optimize the implementation of the CSF on TROPOMI data for city-like sources. Figure 3A shows a CO-plume

observed by TROPOMI over Cairo on April 7th 2019. As expected, the plume follows the 10-m wind direction given by

NASA/GMAO GEOS-FP reanalysis data (Molod et al., 2012). We start by determining the city center, for our purposes de-

fined as the location at the center of the urban emissions and therefore best representing the origin of the city’s total emission.

The location of the center is determined by taking the weighted average position of the pixels in DACCIWA that are part of150

the city mask introduced in Section 2.2. Weights of the pixels are equal to their emission rate. By determining the city location

using the emission inventory, we ensure that we are comparing similar regions when we compare our satellite-based emission

estimates with the emission inventories in Section 3. To make sure the entire plume is downwind, we start the transects of

our CSF 0.1◦ upwind of this city center. As the wind direction is an important source of uncertainty, the downwind direction

can not be solely based on the GEOS-FP reanalysis wind data. Instead, following Sadavarte et al. (2021a), we infer the wind155

direction from the satellite observations by selecting the direction of the highest mean downwind concentration within 90◦

of the reanalysis wind direction. To do so, we calculate the mean downwind concentration over 180 boxes (0.1◦ width and

0.4◦ length) rotated at 1◦ intervals, and pick the direction with the highest downwind concentration. In the absence of a clear

plume, this method would create a positive bias as it would select the highest enhancement in the noise. Therefore, we use

the reanalysis wind direction if the mean enhancement does not exceed 5 ppb. To calculate CO enhancements, we subtract a160

background calculated as a mean upwind concentration over a 0.4◦x0.4◦ square starting 0.3◦ upwind from the city center (Fig.

3B). If this box contains fewer than five valid pixels, we extend it symmetrically with two arcs of a circle of 10◦, 20◦, 45◦ up

to 60◦ until there are at least five TROPOMI pixels in the background region (Fig. 3C). We use extension in an arc-like fashion

rather than increasing the size of the square to be able to get estimate background values for coastal cities. Retrievals over

water are only possible if there are clouds present, hence increasing the size of the background square upwind could result in165

background pixels far away from the city that are not representative for the local background.
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After determining the initial direction of the plume, we need to better capture the shape of the plume to draw transects

perpendicular to the plume. The shape of the plume is determined in two steps. First, we select all pixels in a downwind

box (0.3◦ width, 0.8◦ length) that exceed the mean concentration in the surrounding 3◦x3◦ area by more than 1.8 standard170

deviations, these pixels are referred to as the spline mask. We then fit a 2D-spline (0.8◦ length) through the resulting spline

mask. If, due to a lack of signal or missing pixels, the spline mask contains fewer than 3 pixels, a spline fit is unlikely to capture

the true plume shape and we use a straight line in the (optimized) wind direction instead (Fig. 3C). The transects (0.4◦ width)

are drawn perpendicular to the spline, separated by 0.04◦. The transects have a larger width than the box used to determine

the spline mask to ensure the transects cover the entire plume width. All pixels overlapping with the transects are used in175

the emission quantification. We also include days where no clear plume is visible to avoid systematic overestimation of the

average emission rate. Using Eq. 2, an emission estimate can be derived for every transect. We stop drawing transects when

the emission rate estimates of two consecutive transects are more than one standard deviation below the mean estimate of the

earlier transects, indicating the end of the plume. Transects with less than 70% pixel coverage are removed from the estimate

as they will not have a complete integral, resulting in underestimated emissions.180
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Figure 3. Example of how the cross-sectional flux transects perpendicular to the plume are drawn. (a) TROPOMI data over Cairo on April

7th 2019. The city center is shown with a cross and taken from the DACCIWA emission inventory. The arrows show direction and magnitude

of GEOS-FP 10-m winds at their native 0.25◦ x 0.3125◦ resolution (Molod et al., 2012). (b) Pixels downwind of the city that surpass

the regional background by more than 1.8σ form a plume mask through which a 2D spline is fitted (grey line). The transects used for

quantification (purple lines) are drawn perpendicular to the spline fit starting 0.1◦ upwind of the city center. The first two transects are

dashed to reflect that they are not used for the emission quantification. The background is estimated over the black 0.4◦x0.4◦ box upwind.

(c) TROPOMI observation over Cairo on March 27th 2020. Due to a lack of coverage there are insufficient pixels to generate a reliable spline

mask. A rectangular box (grey) is therefore used to draw transects instead. The basic background is extended symmetrically with circle arcs

to compensate for a lack of coverage upwind.

Contrary to studies using high-resolution satellites (Varon et al., 2018, 2020), the plumes observed with TROPOMI cover

distances over which there can be significant fluctuations in wind speed and direction. We therefore use the wind speed at each

transect instead of a single wind speed for the entire plume. The wind speed at the transects is calculated in two steps. First,

a wind speed is calculated for each TROPOMI pixel by interpolation of the reanalysis wind product. Second, the wind speed

for each transect is determined by taking the average wind speed of the overlapping TROPOMI pixels, weighted by the length185

of the overlap. Similar to trends observed in (Sadavarte et al., 2021b), the first two transects are found to have roughly 30%

lower emissions than the transects further away, which have a stable mean emission rate. This pattern is consistent across the

cities investigated. One reason is that the early plume only captures part of the city’s emissions, another explanation is that

the associated pixels might see a partial-pixel absorption saturation effect (Pandey et al., 2019). Incorporating the first two
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transects would result in an average underestimation of emissions by 8%. We therefore remove the first two transects from the190

emission estimation.

On the spatial scale relevant to plumes observed by TROPOMI, there can be contamination of the city signal by carbon

monoxide produced by open fires (e.g. agricultural fires or wildfires). CO enhancements caused by open fires can result in

overestimation of either the background or the downwind urban enhancement depending on their location. To avoid this, days

with considerable CO contributions from open fires have been removed from our estimates. These days were selected based195

on the fire emission data from the Global Fire Assimilation System fire emission (GFAS) inventory (Kaiser et al., 2012) that is

based on satellite measurements of fire radiative power. Days with cumulative fire emissions over 57 Mg per hour (equivalent

to 0.5 Tg yr-1) within 1.5◦ from the city center are removed. Additionally, days with strong burning events closer to the city

(23 Mg hr-1 within a 0.75◦ radius) are removed as well (Appendix B). Although the change in emission rate by this filtering is

limited for most cities, the filter can change estimated emission rates by up to 47%, as seen in Lusaka (Zambia).200

2.5 Uncertainty analysis

To estimate the uncertainty of the estimated emission rates, we compile an ensemble of emission estimates for each city. We

generate the ensemble by varying parameters of the quantification method such as the wind database used. For example, we

vary parameters such as the number of transects and the distance of the background box. To incorporate the uncertainty on the

wind data, we use our method with GEOS-FP 10 meter altitude winds, GEOS-FP planetary boundary layer averaged winds205

(Molod et al., 2012) as well as 10 meter altitude winds from the ERA5 product, provided by the European Centre for Medium-

Range Weather Forecasts (ECMWF; (Hersbach et al., 2020)). A complete list of the varied parameters and their ranges can be

found in appendix A. For each city, the spread in the resulting ensemble is reported as uncertainty.

2.6 Calibration and validation

This section describes the application of the CSF to simulated CO column mixing ratios. The simulations are used to determine210

parameter settings (e.g. spline length and transect width) and to calibrate an effective wind (Varon et al., 2018) for TROPOMI-

sized pixels. In addition, the simulations are used to evaluate how well the CSF can quantify emission rates of simulated

plumes.

As simulated (and TROPOMI observed) plumes stay within the inner domain, only the inner domain is used to test the perfor-

mance of the CSF. A set of synthetic TROPOMI observations is created by sampling the simulation output over the TROPOMI215

footprints, applying its averaging kernel, selecting pixels based on quality value as discussed in Section 2.1, and adding Gaus-

sian noise with a standard deviation equal to the reported uncertainty of the respective TROPOMI pixel. The TROPOMI quality

value filtering ensures relatively clear sky observations with good surface sensitivity. We also calculate "idealized" pressure

weighted columns, which assume a uniform vertical sensitivity (flat averaging kernel), over the TROPOMI footprints without

taking into account whether there is a valid TROPOMI observation as a first check to see whether the CSF can reproduce the220

emissions used as model input.
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We first test the validity of the CSF method using the idealized columns with 10-m winds output by the WRF simulation.

The WRF winds are directly responsible for transport within the simulation, and can therefore be considered as the true wind

fields behind the modeled concentrations. Parameters like the number of transects and distance of the background region are225

tuned to get optimal quantification estimates on the simulated data, such that the fitted splines capture the observed curvature

of the plumes and the background is not affected by the urban emissions. A list of the different parameters and their values can

be found in Appendix A. While the true wind field varies with altitude, the CSF method requires just a single (2D) wind field

that is representative for the transport of the plume. We use the simulations to calibrate the CSF by introducing an effective

wind speed that replaces the wind speed in Eq. 2 following the procedure by (Varon et al., 2018). The effective wind speed is230

the wind that best captures the transport of the plume. It is a parametrization of the true wind speed to account for the effects of

turbulence and variation in vertical wind speed and injection height. As the emission rates in the WRF simulations are known,

the effective wind can be calculated explicitly for every orbit for each of the simulated cities. Figure 4 shows the relation

between the effective wind (Ueff ) and the WRF 10-m winds U10 averaged over the plume; the fitted linear relation is:

Ueff = a10U10 + b10, (3)235

with a10 = 1.43 and b10 =−0.92 m s-1 (R2 = 0.82). U10 is the wind speed at the time of overpass at 10 meter altitude. We

determine the effective wind relationship separately for the planetary boundary layer averaged winds, which tend to be higher

than the surface winds. The resulting calibration gives aPBL = 0.98 and bPBL =−0.20 (R2 = 0.62). While the absolute value

of the PBL winds is closer to the effective wind speeds, using the U10 winds captures more of the variability.

Figure 4. Determination of the relation between the effective wind and both the wind speed at 10 meter altitude (left) and the planetary

boundary layer averaged winds (right). The effective wind corrects for the effects of turbulence, injection height and variation in the vertical

wind profile. The simulated plumes used in the calibration cover a full year over Cairo, Bamako and Lagos.
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After determination of the effective wind on plumes with idealized pressure profiles, we test the performance of the CSF on240

more realistically sampled plumes which include the TROPOMI quality filtering and averaging kernel sensitivities as described

in Section 2.1 to see whether the CSF can correctly quantify emission rates from synthetic observations with quality filtering

and non-uniform vertical sensitivity. To test the method’s sensitivity, we perform an additional effective wind calibration on

these data. The resulting linear fit (a= 1.4, b=−0.85, R2 = 0.23) yields similar results and shows the filtering has limited

impact on the calibration, while the lower R2 value reflects the larger variation in estimated emission rates. At the same time245

we test the lower limit to which we can trust the resulting emission estimates, as smaller enhancements are more difficult to

distinguish from the background. As the modeled output concentration from the WRF simulations without chemistry scales

linearly with the magnitude of the input emissions, emissions from the different sectors provided by the bottom-up inventories

can be scaled up and down without having to rerun the chemical transport model. This allows us to simulate plumes from

cities with different emission rates with limited effect on the simulated background through scaling of the emission sector most250

concentrated in the considered urban area. We use this to determine the lower limit to which our method can be trusted. Figure

5 shows a comparison between the simulated input and the retrieved emission rates for the three simulated cities. The results

suggest that the CSF is able to reproduce input of the WRF simulations when using one year of data for cities with emission

rates larger than 0.1 Tg yr-1.
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Figure 5. Emission quantification by the CSF on simulated plumes. The plumes are simulated with the WRF-model for the year 2019 over

Lagos (Nigeria), Cairo (Egypt) and Bamako (Mali). The simulations either used the EDGAR global bottom-up inventory or the DACCIWA

inventory. The dotted lines show a 30% deviation from the (dashed) 1:1 line.

To quantify TROPOMI plumes over all major cities in Africa we will use the NASA/GMAO GEOS-FP wind fields (Molod255

et al., 2012) rather than the WRF simulated wind fields which are available only for the 3 cities selected for evaluation and

calibration. For each TROPOMI pixel, we spatially interpolate the GEOS-FP wind field, which has a 0.25◦ x 0.3125◦ spatial

resolution and a 1-hour time resolution. The NCEP winds that drive the WRF simulated wind fields have a coarser time

resolution of 6 hours. Figure 6 shows emission estimates of simulated data using the GEOS-FP wind fields instead of the

WRF fields to mimic uncertainties in the wind fields. Individual days are shown as colored dots, while the mean over the full260

year is shown as a colored line to represent the average estimate. The uncertainty of the average is determined as discussed in

section 2.5 and shown as a shaded area. The true emission is shown as a black dotted line, and lies within the uncertainty of

the estimate for both Cairo and Bamako. For Lagos the emission rate is underestimated when using the WRF simulations as

the NCEP wind fields that drive the simulations are higher than both the GEOS-FP and ERA5 wind products specifically over

13



Lagos by about 60%. The difference between the wind products might be caused by the fact that Lagos lies in the West-African265

monsoon region where transport has been shown to be difficult to model (Liu et al., 2014).

Figure 6. To check the validity of the CSF method for quantification of city emissions we apply the method to simulated plumes sampled

as TROPOMI would see them. The dots show CSF emission estimates for individual days over Cairo, Bamako and Lagos respectively. The

dark colored line shows the annual CSF mean with the uncertainty based on the emission ensemble shown by the shaded area. The simulation

emission input, black dotted line, lies within the uncertainty of the mean CSF emission estimate for Cairo and Bamako showing that the CSF

can successfully quantify these urban emissions. For Lagos the emissions are underestimated as the NCEP winds used to drive the simulation

are much higher than both the GEOS-FP and ERA5 wind products.

3 Results & Discussion

After verification of the validity and calibration of the method, we apply it to 29 of the largest cities in Africa. These cities

are chosen based on their population or because they are emitting above the CSF’s quantification threshold in the DACCIWA

inventory. Figure 7 shows the results of our TROPOMI quantification and a comparison with the DACCIWA and EDGAR270

inventories. This data is also included in the appendix in Table D1. As discussed in Section 2.2, we used different sizes for the

city masks applied to the bottom-up inventories to ensure a fair comparison to the satellite-based emission estimates and found

the choice of city mask did not impact our conclusions.
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Figure 7. CSF emission quantifications for the largest African cities. Comparison between TROPOMI emission estimates averaged for

2019-2021 (shown as colored circles) and the DACCIWA and EDGAR v5 emission inventories for 2015 shown by the black (dashed) rings.

The emission strength is indicated by the size of the circles or rings. The same comparison is made in bar plots where the first two bars

show the emission rates from DACCIWA and EDGAR respectively, including the sectoral breakdown. The third bar gives the corresponding

TROPOMI estimate where the uncertainty is given by the range of the ensemble. The cities are ordered by geographical location. The

emission estimate for Lagos in DACCIWA extends beyond the figure boundary.

On average we find TROPOMI emissions of 0.25 Tg yr-1 per city, compared to 0.35 Tg yr-1 in DACCIWA and 0.18 Tg yr-1

in EDGAR. Except for Abuja (Nigeria) and Khartoum (Sudan), the DACCIWA emission estimates are consistently higher than275

the EDGAR estimates. Additionally, the two inventories disagree on the sectoral breakdown of the emission estimates with the

domestic sector contributing 59% to the total emission rate in DACCIWA while EDGAR attributes 54% of total emissions to

the industry sector. For 10 cities TROPOMI and DACCIWA agree within the TROPOMI uncertainty, that is the case for 9 cities
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in EDGAR. For 16 cities, the TROPOMI estimates are closer to DACCIWA than to EDGAR. The largest differences between

TROPOMI and DACCIWA are found for Abidjan (627%) and Lagos (417%) while estimates for Cairo (2%) and Antananarivo280

(9%) agree best. To explain the differences between TROPOMI and the inventories we will now focus on some specific areas.

Northern Africa

Two cities that stand out in Fig. 7 are Algiers and Casablanca. Unlike DACCIWA, EDGAR does not include any major

emission sources around these cities, even though they both have populations of 4.2 million. EDGAR also appears to largely285

underestimate the emissions of the two Egyptian cities that were investigated, Cairo and Alexandria, while the DACCIWA

emissions for these cities agree well with our TROPOMI estimates. As we can not directly obtain the underlying emission

factors and activity data that are used in EDGAR and DACCIWA, we compare the TROPOMI CO emission rates to the

corresponding CO2 emission rates in EDGAR as shown in Fig. 8. The CO2 emission rates are also included in Table D2 in

the appendix. Cairo, Alexandria, Casablanca and Algiers clearly deviate from the other cities. Their much higher values for290

COTROPOMI/COEDGAR correspond to lower values for CO/CO2 in EDGAR, indicating that not the activity data but the CO

emission factors for these cities are underestimated in EDGAR. This is further confirmed by the higher CO/CO2 values in

DACCIWA and the fact that the absolute CO2 emission rates for these cities agree well between the two inventories. The

underestimate in CO may point at an overestimated combustion efficiency used in the compilation of the EDGAR emissions

for this region. Similar observations over Cairo were made by MacDonald et al. (2023) when comparing measured CO and295

CO2 concentrations.
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Figure 8. Comparison between inventory combustion completeness and TROPOMI to inventory CO estimates. Each marker represents a

single city. The CO2 values for both inventories include both fossil fuel and biofuel combustion emissions. As power plants hardly emit any

CO per kg of emitted CO2 due to their high combustion efficiency, the contributions of this sector are removed from the CO2 values. Cairo,

Alexandria, Algiers and Casablanca have very low CO emission rates in EDGAR compared to TROPOMI and compared to EDGAR CO2

emissions, which indicates that EDGAR largely overestimates the combustion efficiency for these cities. The four cities in EDGAR with

CO/CO2 values around 20 are all cities in South Africa showing lower CO-emission rates than the other African cities.

South Africa

In South Africa we find closer agreement between EDGAR and TROPOMI than in northern Africa. However, the emission

rates for the 4 considered cities in DACCIWA are on average 2.4 times higher than those based on TROPOMI (Fig. 7). The

emission ratios from Fig. 8 show that the South African cities stand out from the other cities in EDGAR, as they have relatively300

low CO/CO2 emission ratios, suggesting high average combustion efficiencies. This does not hold for DACCIWA, where the

South African cities have CO/CO2 emission ratios comparable to other cities. This indicates that the CO emission factors for

South Africa are overestimated in DACCIWA, and these cities have higher combustion efficiencies more in line with EDGAR.
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Nigeria305

The four investigated cities in Nigeria show varying results when comparing TROPOMI to the inventories, but the two cities

that stand out are Lagos and Kano. In Lagos we estimate emissions of 0.36 (0.23-0.56) Tg yr-1, that are consistent with EDGAR,

but DACCIWA has emissions that are 5.2 times higher, a difference which is much larger than the uncertainty in wind data

discussed in Section 2.6. For Kano, in contrast to Lagos, we observe an emission rate of 0.53 (0.41-0.62) Tg yr-1 which is con-

sistent with DACCIWA but more than twice the EDGAR estimate (0.19 Tg yr-1). The CO/CO2 ratios of the inventories agree310

within 50% but the differences are caused by the activity data. Figure 9 shows that the CO2 emission rates in DACCIWA for

Lagos, Kano and Ibadan are respectively 8.1, 3.8 and 3.3 times higher than in EDGAR, this data is also available in appendix in

Table D2. Comparing Nigeria’s national CO2 budget there is a 24% difference between the inventories (EDGAR 530 Tg yr-1

to DACCIWA 700 Tg yr-1) but the larger regional discrepancies (over 700% for Lagos’ CO2 emissions) suggest differences in

spatial allocation as well.315

Figure 9. Comparison between the TROPOMI CO emission estimates and EDGAR and DACCIWA CO and CO2 for four cities in Nigeria

with the same color scheme as Fig. 7. The differences between the two inventories in CO2 emission rates indicate a different spatial allocation

- based on gridded activity data- of the national totals.

Côte d’Ivoire

Abidjan in Côte d’Ivoire has the largest relative discrepancy between DACCIWA (0.65 Tg yr-1) and TROPOMI (0.1 (0.05-

0.16) Tg yr-1). In DACCIWA, the domestic sector contributes for 89% of the city’s emissions and Abidjan is the city with one

of the highest CO/CO2 values of all investigated cities. In EDGAR, the domestic CO/CO2 ratio for Abidjan is four times320

lower, which would indicate a four times lower emission rate. This would bring the DACCIWA emission rate much closer to
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the TROPOMI observed emission, indicating that, similar to South Africa, DACCIWA may overestimate the city’s domestic

sector’s CO emission factor.

Libya325

Tripoli, the capital of Libya, stands out as its CO emissions in both inventories are almost exclusively (90+%) due to road

transport. The TROPOMI estimate for this city of 0.26 (0.15-0.32) Tg yr-1 is 1.7 and 2.2 times higher than DACCIWA and

EDGAR respectively. The difference can be partly explained by considering the domestic and industry sectors. In both emis-

sion inventories the CO/CO2 ratios for these sectors are four to five times lower than the mean of the other cities and two

to three times lower than the next lowest city (excluding Egypt, Morocco and Algeria). This implies these sectors in Tripoli330

have high combustion efficiency compared to other cities. However, based on the TROPOMI estimate, both inventories seem

to underestimate the emission factor for Tripoli specifically for the non-road transport sectors.

Temporal emission patterns

With the three-year TROPOMI dataset, we can also investigate the temporal variability of emissions. Earlier studies, focusing335

on concentration trends rather than emission estimates, have found that CO concentrations over Cairo are lower on Fridays,

which is the day off in the Islamic world (Rey-Pommier et al., 2022). This "weekend effect" has also been observed for nitrogen

dioxide (NO2) and ozone (O3), which like CO in Cairo are dominated by transport emissions (Beirle et al., 2003; Khoder,

2009; Stavrakou et al., 2020). Combined with the fact that both emission inventories agree on road transport as the main

contributor to emissions in Cairo, lower CO emissions are indeed expected on Fridays when there is less commuter traffic.340

Figure 10 indeed shows a 32% drop in emissions on Fridays over Cairo. A similar reduction in emissions can be seen over

Algiers, which can also be attributed to reduced road traffic. Similar significant patterns were not seen for the other cities that

tend to have relatively lower contributions from road traffic.
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Figure 10. TROPOMI emission estimates over Cairo (panel a) and Algiers (panel b) for different days of the week averaged over 2019-2021.

The numbers in the bars show the number of days the averages are based on. Both cities show lower emissions on Friday consistent with

road transport being the main contributor to urban emissions and Friday being the standard day off in Islamic countries.

4 Conclusions

We adapted and calibrated the computationally efficient Cross-Sectional Flux (CSF) method to quantify urban carbon monox-345

ide emission rates from major cities in Africa using TROPOMI data. We determined optimal values for the parameters of

the CSF by applying the method to a full-year of simulated WRF plumes over three distinctly different African cities (Cairo,

Lagos, and Bamako), such that the transects drawn best match the shape and curvature of the simulated plumes. These simu-

lations were also used to calibrate the CSF’s effective wind speed relationship for TROPOMI data. By applying the calibrated

CSF to the simulated data with known emission rates, we found that we can quantify urban CO emissions down to 0.1 Tg350

yr-1 within 30% uncertainty. After calibration, we applied our CSF method to TROPOMI observations of 29 of Africa’s most

populated/emitting cities. We focus on Africa as there are relatively few dedicated emission inventories for the continent and

large uncertainties in emission rates are expected.
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We compared our TROPOMI-based emission estimates with the global EDGAR emission inventory and the Africa-focused355

DACCIWA inventory. There are substantial differences between urban CO emissions from both inventories. We did not find

vastly better average agreement of either inventory with TROPOMI. DACCIWA is closer to the TROPOMI estimate for 16

out of 29 cities. For 10 cities, the DACCIWA and TROPOMI estimates agree within the uncertainty of the TROPOMI-based

estimate, but there are also cities with large significant differences of over 600%. Compared to EDGAR, we find 9 cities agree

within the uncertainty and we similarly find cities with large discrepancies.360

We then evaluated our results for different regions. In northern Africa, TROPOMI observes higher emission rates than shown

in EDGAR for cities in Egypt, Algeria and Morocco. The EDGAR CO to CO2 emission ratios for these four cities are relatively

low, implying that the mismatch with TROPOMI may originate from the emission factors, which implies that EDGAR would

overestimate the average combustion efficiency in these cities. In South-Africa, the TROPOMI estimates agree with EDGAR365

but the DACCIWA estimates are high in comparison. EDGAR shows lower CO to CO2 ratios and hence higher combustion

efficiency for South Africa compared to other parts of Africa, implying those ratios may be too high in DACCIWA. Similarly,

DACCIWA appears to underestimate the combustion efficiency in Abidjan (Côte d’Ivoire). For Tripoli (Libya), both invento-

ries estimate lower emission rates than the estimate based on TROPOMI. Specifically the domestic and industry sectors show

particularly high combustion efficiencies compared to other cities in both inventories, which can explain part of the discrepancy.370

We also found some discrepancies that can be attributed to the activity data used by the inventories. We found a factor

∼4 lower emissions based on TROPOMI for Lagos (Nigeria) than estimated by DACCIWA. The associated DACCIWA CO2

emissions are eight times larger than in EDGAR which can be partly a difference in activity data but also suggests a mismatch

related to the spatial distribution of emissions. For Kano (Nigeria) DACCIWA estimates CO2 emissions that are four times375

larger than EDGAR. Here, the TROPOMI estimate agrees better with DACCIWA and the activity rate, which corresponds to

CO2 emission, in EDGAR seems to be an underestimation.

The large TROPOMI data volume enables identification of temporal emission patterns. Over Cairo and Algiers we find

significantly lower emission rates on Fridays - the local rest day - compared to other days of the week. The ability to recognise380

such patterns builds confidence and shows the strength of TROPOMI’s daily global coverage combined with a computationally

efficient method like the CSF method developed here.

Code and data availability. TROPOMI CO data are publicly available at https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/co/.

GEOS-FP wind data can be downloaded at https://gmao.gsfc.nasa.gov/GMAO_products/. ERA5 wind data are available at

https://cds.climate.copernicus.eu. WRF-Chem code is available at https://github.com/wrf-model/WRF/releases, in this work version385

4.1.5 was used. EDGAR v5 CO data is available at https://edgar.jrc.ec.europa.eu/dataset_ap50. EDGAR v5 CO2 data is available at

https://edgar.jrc.ec.europa.eu/dataset_ghg50. DACCIWA CO and CO2 data are available at https://eccad.aeris-data.fr/ at the Emissions of
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atmospheric Compounds and Compilation of Ancillary Data (ECCAD) system after creation of a login account. GPW v4 gridded popula-

tion density is available at https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11. Open fire emissions from GFAS are

available at https://atmosphere.copernicus.eu/global-fire-emissions.390
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Appendix A: TROPOMI-based CO uncertainty

The CSF method as applied in this work has many parameters that were calibrated on simulated plumes. In order to determine

the uncertainty of the estimated emission rate we have created an ensemble of emission estimates by varying these parameters.

The members of the ensemble and the ranges over which they were varied are shown in Table A1. The wind databases are the

three wind products as described in section 2.5 and are responsible for a mean uncertainty of -19% and + 12%. The standard395

deviation threshold for spline pixels is the number of standard deviations a pixel has to be above the background concentration

in order to be considered part of the plume. Pixels identified as part of the plume are only used for fitting the spline shape.

The number of cross-sections is the total number of transects drawn perpendicular to the direction of the plume. As described

in section 2.4 not all transects are taken into account in the quantification. The number of cross-sections is mostly a measure

for the line density, or the distance between consecutive transects as the transects are evenly spaced over the full length of400

the spline. The minimum pixel coverage is the minimum fraction of a line that needs to be covered by pixels and is a balance

between retaining enough days with a valid estimate and not underestimating emissions. A lower limit of 50% coverage per

line will retain a lot of lines, and thus, more days with an estimate, however, the cross-sections will potentially miss large parts

of the plume. The distance of the background box is important as one would like the box to be close to the city to get a good

representation of the local background. However, it must not overlap with any urban emissions to have a clean background.405

As explained in section 2.4 the transects start upwind of the city center to capture the full city plume. We vary the distance

between the first transect and the city center for our uncertainty estimate. As a last member of the ensemble we use the spread in

emission estimates of the individual transects. We include the means of the transects with the lowest and highest 50% emission

rates in the ensemble.

Table A1. Variables used in the uncertainty analysis and the ranges over which they were varied. The resulting ensemble spreads are repored

as uncertainty.

Parameter Domain Default

Wind database GEOS-fp 10m, ERA5 10m & GEOS-fp pbl GEOS-fp 10m

Standard deviation threshold for spline pixels {1.2 - 2.4} 1.8

Number of transects {15 - 25} 20

Minimum pixel coverage per transect {50% - 90%} 70%

Distance of background box {0.2◦ - 0.4◦} 0.3◦

Varying upwind distance first transect {0◦ - 0.2◦} 0.1◦

Transects used for estimate {Lowest 50% - highest 50%} All
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Appendix B: TROPOMI data filtering410

Although the CSF has been shown to reproduce simulated emission rates (Fig. 5), it can not be applied to every single overpass

of TROPOMI. For example, days with a lot of missing pixels in the TROPOMI data can lead to underestimation of the emission

rates. To prevent a positive bias, it is important to not only use days with strong, clearly visible plumes. With the filters chosen in

this work, over 400 days are accepted as quantifiable over the 3-year period studied for most non-coastal cities and coastal cities

with predominantly inland winds (e.g. Cairo has 713 estimates, Johannesburg 427 and Khartoum 570). With TROPOMI’s daily415

overpasses this means that we estimate emissions on roughly 40% of all days. Regions with fewer estimates tend to be coastal.

For example, we only have estimates for 160 days over Lagos and 113 for Dakar because of limited TROPOMI coverage over

water. An additional reason for a small number of valid estimates lies in the occurrence of open fires; for example, 224 orbits

(42%) are removed from our estimate over Lusaka (Zambia) due to fires within 1.5◦ of the city center and stronger fires within

0.75◦.420

The filters employed are shown in Table B1.
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Table B1. Filtering applied to the data to ensure correct application of the CSF method.

Description Value

Per pixel

Quality flag TROPOMI (land) ≥ 0.7

Quality flag TROPOMI (water) = 0.7

Per transect

Misalignment between plume and wind direction < 45◦

Minimum pixel coverage > 70%

Per plume

Downwind coverage in a 0.3◦x0.8◦ box > 60%

Effective wind speed > 2m s-1

Maximum concentration outside the plume < 200ppb (1.5◦ radius)

Number of transects used for the estimate > 3

Fraction estimate transect 8-20 to transect 3-7. High emission estimates < 2.5x

of the far away lines tend to indicate interference of different sources

Second derivative of spline scaled to 1◦ pixel size. This represents < 0.05

the dimensionless curvature of the fitted spline.

Mismatch between the first transect and the starting < 0.35◦

pixel of the plume

Fire emission from Global Fire Assimilation System (GFAS) < 23Mg hr-1 (0.75◦ radius)

database, (Kaiser et al., 2012) < 57Mg hr-1 (1.5◦ radius)
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Appendix C: CSF estimates

Table C1. Emission estimates for the studied African cities by applying the CSF method to the TROPOMI CO product (2019-2021) as well

as the corresponding emission rates according to the DACCIWA (2015) and EDGAR (2015) inventories. All emission rates are in Tg yr-1.

Population is taken from the Center for International Earth Science Information Network CIESIN (2018)

City Country Population TROPOMI estimate Lower limit Upper limit DACCIWA EDGAR

Algiers Algeria 4.2M 0.213 0.177 0.307 0.288 0.025

Luanda Angola 5.1M 0.268 0.166 0.413 0.489 0.263

Ouagadougou Burkina Faso 2.8M 0.273 0.243 0.335 0.126 0.076

Kinshasa Congo 7.4M 0.628 0.49 0.894 0.477 0.266

Abidjan Côte d’Ivoire 7.1M 0.09 0.054 0.157 0.654 0.266

Alexandria Egypt 3.3M 0.197 0.164 0.257 0.156 0.041

Cairo Egypt 16.7M 0.546 0.456 0.608 0.556 0.136

Addis Ababa Ethiopia 4.4M 0.239 0.2 0.295 0.268 0.204

Accra Ghana 3.5M 0.194 0.176 0.318 0.148 0.172

Nairobi Kenya 4.8M 0.17 0.153 0.247 0.441 0.353

Tripoli Libya 1.2M 0.264 0.151 0.32 0.146 0.121

Antananarivo Madagascar 3.0M 0.135 0.104 0.156 0.123 0.083

Casablanca Morocco 4.2M 0.11 0.078 0.171 0.091 0.008

Maputo Mozambique 2.5M 0.151 0.125 0.199 0.176 0.097

Abuja Nigeria 2.6M 0.255 0.089 0.483 0.161 0.247

Ibadan Nigeria 2.2M 0.145 0.039 0.183 0.207 0.232

Kano Nigeria 5.3M 0.531 0.409 0.616 0.413 0.189

Lagos Nigeria 10.9M 0.36 0.227 0.558 1.862 0.397

Dakar Senegal 4.2M 0.293 0.154 0.381 0.157 0.081

Cape Town South Africa 4.1M 0.189 0.155 0.252 0.288 0.252

Durban South Africa 3.3M 0.157 0.132 0.233 0.482 0.204

Johannesburg South Africa 9.1M 0.232 0.184 0.291 0.77 0.482

Pretoria South Africa 6.4M 0.197 0.139 0.209 0.338 0.216

Khartoum Sudan 3.1M 0.396 0.336 0.432 0.12 0.155

Dar es Salaam Tanzania 5.4M 0.286 0.241 0.496 0.396 0.181

Kampala Uganda 4.3M 0.362 0.279 0.431 0.245 0.117

Lusaka Zambia 2.4M 0.226 0.108 0.23 0.269 0.168

Bulawayo Zimbabwe 0.8M 0.094 0.043 0.111 0.13 0.057

Harare Zimbabwe 2.7M 0.142 0.076 0.157 0.304 0.117
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Appendix D: Inventory emission rates

Table D1. Sectoral breakdown of the CO emission rates for the studied African cities according to the DACCIWA and EDGAR inventory.

All emission rates are in Gg yr-1.

DACCIWA EDGAR

City Domestic Industry Other Power Road Domestic Industry Other Power Road

Algiers 0.3 33.7 0.6 0.9 252.2 1.3 2.7 0.2 0.4 20.0

Luanda 326.1 19.4 12.0 3.4 129.0 25.4 174.0 0.3 6.5 56.1

Ouagadougou 90.3 8.0 0.0 0.8 26.4 13.2 39.8 0.1 2.8 20.0

Kinshasa 411.1 25.4 0.0 0.0 40.4 20.1 222.3 0.1 0.1 23.5

Abidjan 579.9 21.4 20.4 7.0 25.5 10.8 183.6 0.3 1.6 15.7

Alexandria 24.3 46.7 20.7 4.4 59.6 3.4 1.8 0.3 15.8 19.9

Cairo 75.8 145.5 64.6 26.1 244.3 3.5 6.4 1.1 9.3 115.9

Addis Ababa 245.3 8.5 1.8 0.0 12.3 55.3 134.8 0.2 0.0 13.9

Accra 108.2 3.2 3.9 0.0 32.4 5.0 90.2 1.0 0.5 43.2

Nairobi 370.8 11.7 0.2 2.3 59.1 23.5 266.9 0.3 2.1 60.0

Tripoli 3.1 4.2 0.0 6.6 131.6 1.9 0.1 0.1 0.0 118.9

Antananarivo 68.8 17.0 30.2 0.1 6.5 7.5 68.3 0.1 0.0 7.3

Casablanca 29.2 37.1 4.6 0.5 20.0 1.5 3.9 0.0 0.2 2.2

Maputo 153.1 5.3 0.1 3.1 14.7 21.0 62.7 0.0 0.3 13.1

Abuja 126.2 10.2 3.6 0.1 21.0 82.6 32.1 0.0 0.0 131.9

Ibadan 145.8 11.7 4.1 0.3 44.7 36.2 46.4 0.0 0.0 149.1

Kano 286.3 23.0 8.1 0.0 95.5 96.9 60.6 0.0 0.0 31.0

Lagos 733.5 59.0 20.8 2.4 1046.3 33.2 143.5 0.1 0.7 219.8

Dakar 123.3 17.4 0.1 6.1 10.0 2.7 62.7 0.2 3.2 12.6

Cape Town 139.9 50.7 5.7 1.4 90.5 56.9 170.1 0.7 0.0 23.8

Durban 183.8 66.6 7.5 0.0 224.4 53.3 139.4 0.3 0.0 10.9

Johannesburg 355.8 128.9 14.5 22.4 247.9 108.8 317.5 0.1 0.0 55.1

Pretoria 180.4 65.4 7.4 0.9 83.4 57.3 129.0 0.1 0.4 29.3

Khartoum 77.2 10.8 3.8 1.6 26.2 16.3 90.0 0.1 5.6 42.6

Dar es Salaam 354.2 15.0 9.6 1.7 15.8 15.1 138.1 0.1 10.4 17.7

Kampala 198.8 10.5 0.1 1.2 34.2 65.6 42.5 0.0 0.0 8.8

Lusaka 239.0 11.7 1.2 0.0 16.7 31.7 126.3 0.0 0.0 9.8

Bulawayo 79.1 4.3 3.5 0.2 42.4 21.5 2.0 0.0 0.2 33.0

Harare 248.2 13.3 10.8 0.2 31.5 69.8 4.5 0.1 0.4 41.7
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Table D2. Sectoral breakdown of the CO2 emission rates for the studied African cities according to the DACCIWA and EDGAR inventory.

All emission rates are in Tg yr-1.

DACCIWA EDGAR

City Domestic Industry Other Power Road Domestic Industry Other Power Road

Algiers 2.0526 2.3547 0.3026 0.7006 5.9577 2.2141 2.3123 0.1231 0.0446 1.4081

Luanda 4.8853 1.4104 2.2871 0.0 1.2816 1.8331 1.4681 0.1276 1.6398 0.6036

Ouagadougou 2.1571 0.5752 0.701 0.4603 0.1553 0.3469 0.2106 0.1102 0.4868 0.1633

Kinshasa 9.1058 2.4811 4.9228 0.0 0.3205 0.4757 1.1183 0.0897 0.0245 0.2184

Abidjan 5.6168 1.2141 7.6905 4.1632 0.3916 0.3994 1.1479 0.1115 1.1956 0.1948

Alexandria 1.7076 3.1371 0.3293 0.0 0.6755 0.8145 4.1211 0.0639 23.3842 0.9927

Cairo 9.7364 17.8872 3.5146 17.7906 5.4195 3.1328 11.4975 0.7648 13.7938 4.9941

Addis Ababa 5.2452 0.4889 1.0817 0.0 0.3851 1.2733 0.5438 0.2141 0.0005 0.2297

Accra 1.172 0.3122 0.7803 0.6024 0.3533 0.231 0.6034 0.4059 0.3562 0.3729

Nairobi 5.3718 0.9503 4.7633 0.429 0.8817 0.6676 1.6001 0.2878 0.4414 0.5657

Tripoli 0.3477 0.8711 0.3068 7.4683 0.9077 0.252 0.6718 0.022 0.0 0.9969

Antananarivo 1.7812 0.9208 1.0695 0.0798 0.1474 0.205 0.144 0.046 0.0195 0.0622

Casablanca 1.4466 2.1949 0.0158 4.0377 0.4885 0.7635 1.2911 0.0514 1.2078 0.3914

Maputo 2.3379 0.2568 0.6895 0.0 0.1877 0.4888 0.7266 0.0355 0.0795 0.1202

Abuja 4.1275 0.6013 0.5368 0.1024 0.2142 1.9347 0.4962 0.0413 0.0 0.9858

Ibadan 6.678 0.9728 0.8684 0.2404 0.1572 0.944 0.7214 0.0006 0.0006 1.0063

Kano 10.773 1.5693 1.401 0.0311 0.1601 2.3444 0.9346 0.0206 0.0008 0.2502

Lagos 26.3529 3.8388 3.5988 1.9078 4.5136 1.1902 2.2007 0.0889 0.6383 1.5765

Dakar 1.5405 1.01 0.9282 1.9502 0.3954 0.1379 0.4475 0.1115 1.2811 0.2292

Cape Town 3.1332 10.8663 1.2788 1.0896 0.823 1.759 9.0686 0.247 0.0009 1.5695

Durban 2.3207 8.0484 0.543 0.1116 0.7436 1.5599 8.5055 0.0943 0.1335 0.9045

Johannesburg 5.5358 19.1984 2.2775 23.3095 1.7699 3.1791 17.0838 0.1623 4.9948 3.2495

Pretoria 2.2686 7.8676 0.5308 3.0576 0.5046 1.6006 6.6839 0.1254 3.4728 1.7434

Khartoum 0.6315 0.9569 0.3614 0.1673 0.198 0.5049 0.6555 0.101 1.4848 0.5062

Dar es Salaam 5.582 1.0448 1.4222 1.073 0.0259 0.3639 1.5205 0.0908 1.3461 0.1923

Kampala 5.0997 0.8774 1.6523 0.5054 0.2586 1.4997 0.329 0.009 0.0 0.1042

Lusaka 3.8478 1.6338 2.2394 0.0 0.0951 0.7361 1.4979 0.0327 0.0 0.0699

Bulawayo 1.8723 0.1759 0.0062 0.2274 0.1068 0.5132 0.2041 0.0134 0.2151 0.263

Harare 5.522 0.5187 0.0183 0.2416 0.193 1.6508 0.3461 0.059 0.4645 0.4179
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