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Abstract. Nitrogen oxides (NOx) are principle components of air pollution and serve as important ozone precursors. As the San

Joaquin Valley (SJV) experiences some of the worst air quality in the United States, reducing NOx emissions is a pressing need,

yet quantifying current emissions is complicated due to a mixture of mobile and agriculture sources. We performed airborne

eddy covariance flux measurements during the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field

campaign in June 2021. Combining footprint calculations and land cover statistics, we disaggregate the observed fluxes into5

component fluxes characterized by three different land cover types. On average we find emissions of 0.95 mg N m−2 h−1 over

highways, 0.43 mg N m−2 h−1 over urban areas and 0.30 mg N m−2 h−1 over croplands. The calculated NOx emissions using

flux observations are utilized to evaluate anthropogenic emission inventories and soil NOx emission schemes. We show that

two anthropogenic inventories for mobile sources, EMFAC (EMssion FACtor) and FIVE (Fuel-based Inventory for Vehicle

Emissions), yield strong agreement with emissions derived from measured fluxes over urban regions. Three soil NOx schemes,10

including MEGAN v3 (Model of Emissions of Gases and Aerosols from Nature), BEIS v3.14 (Biogenic Emission Inventory

System) and BDISNP (Berkeley Dalhousie Iowa Soil NO Parameterization), show substantial underestimates over the study
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domain. Compared to the cultivated soil NOx emissions derived from measured fluxes, MEGAN and BEIS are lower by more

than one order of magnitude and BDISNP is lower by a factor of 2.2. Despite the low bias, observed soil NOx emissions and

BDISNP present a similar spatial pattern as well as temperature dependence. We conclude that soil NOx is a key feature of the15

NOx emissions in the SJV and that a biogeochemical process-based model of these emissions is needed to simulate emissions

for modeling air quality in the region.

1 Introduction

Nitrogen oxides (NOx ≡ NO + NO2) are important trace gases that affect both the gas and aerosol phases of tropospheric

chemistry. NOx regulates the concentrations of the primary atmospheric oxidant, hydroxyl radicals (OH), and serves as the20

catalyst for the formation of ozone (O3). NOx also affects the formation of inorganic nitrate aerosol through the production

of nitric acid (HNO3) and organic nitrates (RONO2) and plays a role in secondary organic aerosol (SOA) production. NOx,

O3 and aerosol are all detrimental to human health, triggering respiratory diseases (Kampa and Castanas, 2008; Hakeem et al.,

2016) and leading to premature death (Lelieveld et al., 2015).

NOx is predominantly emitted from anthropogenic sources, including light and heavy-duty transportation, fuel combustion,25

and biomass burning. Among these sectors transportation is the largest in the United States (EPA, 2016). Strict regulations

have been implemented to control NOx emissions. Three-way catalysts have effectively reduced emissions from gasoline-

powered passenger vehicles. The application of emission control systems on coal power plants has reduced NOx emissions

(De Gouw et al., 2014). The California Air Resources Board (CARB) has proposed Heavy-Duty Engine and Vehicle Omnibus

Regulation and Associated Amendments and target for 90% reduction in per-vehicle heavy-duty NOxemission by 2031(CARB,30

2016). The regulation of mobile sources leads to an increasing importance of natural NOx sources, such as lightning and soil

emissions. Soil NOx is released as a byproduct of microbial nitrification and denitrification (Andreae and Schimel, 1990).

While the biogeochemistry of soil NOx emission is well established, this biogenic source involves a complex interaction of

soil microbial activity, soil nitrogen (N) content. Besides, agriculture activities, such as the use of fertilizers, lead to a substantial

enhancement of soil NOx emissions (Phoenix et al., 2006).35

Currently, the San Joaquin Valley (SJV) in California experiences some of the most severe air pollution in the United States.

The SJV cities, Visalia, Fresno, and Bakersfield are among the top ten most polluted cities for both ozone and particulate matter

(American Lung Association, 2020). In order to implement appropriate emission control efforts, identifying the contribution

of different NOx emissions are particularly important for the SJV as it features a complex mixture of emissions from fuel

combustion and soil emissions associated with agriculture. The contribution of soil NOx emissions remains highly uncertain.40

While Guo et al. (2020) attribute approximately 1.1% of anthropogenic NOx emissions in California to soil NOx, Almaraz et al.

(2018) argued that due to growing N fertilizer use, the SJV has soil NOx emissions of 24 kg of N ha−1 year−1, contributing

20-51% of the NOx budget of the entire state of California. Similarly, Sha et al. (2021) estimated that 40.1% of the total NOx

emissions over California in July 2018 are from soils.
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Airborne eddy covariance (EC) flux measurements provide a powerful tool to investigate the emission strength of atmo-45

spheric constituents at landscape scales. It has been applied to assess the surface exchanges of greenhouse houses (GHGs)

including CO2 and methane (CH4) (Mauder et al., 2007; Yuan et al., 2015; Sayres et al., 2017; Hannun et al., 2020). In recent

years it has been extended to study emissions of volatile organic compounds and NOx over a megacity (Karl et al., 2009;

Vaughan et al., 2021), vegetation (Karl et al., 2013; Misztal et al., 2014; Wolfe et al., 2015; Kaser et al., 2015; Yu et al., 2017;

Gu et al., 2017), and shale gas production regions (Yuan et al., 2015). Compared to the traditional EC measurements from in-50

struments mounted at a fixed location on a tower, wavelet-based airborne EC measurements allow for larger spatial assessment

and are well suited to regions with inhomogeneous and non-stationary source distributions (Sühring et al., 2019).

In this study, we present airborne EC flux measurements obtained during seven flights of a Twin Otter aircraft over the San

Joaquin Valley in California. Companion studies of NOx emissions over Los Angeles (Nussbaumer et al., 2023) and VOC

(Pfannerstill et al., 2023) and GHG fluxes (Schulze et al. in prep) will be presented separately. We utilize continuous wavelet55

transformation to calculate the NOx flux (Sect. 3). In conjunction with footprint calculations and land classification, we explore

the spatial heterogeneity of NOx emissions and identify component fluxes from the highway, urban, and soil land types (Sect.

4). We also utilize the NOx emissions derived from flux measurements to evaluate anthropogenic emission inventories and soil

NOx schemes (Sect. 5).

2 Measurements60

The airborne EC flux measurements were conducted on a Twin Otter research aircraft operated by the Naval Postgraduate

School (NPS) during the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. The

RECAP-CA field campaign was conducted between June 1st to June 22nd in California, including 7 days of measurements

over the San Joaquin Valley and 9 days of measurements over Los Angeles. The flight path was designed with long straight

legs to ensure good quality of flux measurements (Figure S1) (Karl et al., 2013). The aircraft flew slowly, at the airspeed of65

50-60 m/s, and cruised at a low height of ∼ 300 m above ground. The aircraft took off at ∼11:00 local time at Burbank Airport

and landed at ∼18:00 local time.

The standard instruments aboard the aircraft are described in (Karl et al., 2013) and include total and dew point temperature,

barometric and dynamic pressures, wind direction and wind speed, total airspeed, slip- and attack angles, GPS latitude, GPS

longitude, GPS altitude, pitch, roll, and heading. These measurements are at 10 Hz temporal resolution. VOCs were measured70

at 10 Hz time resolution by Vocus proton transfer reaction time of flight mass spectrometer (Vocus PTR-ToF-MS) as described

in Pfannerstill et al. (2023). Mixing ratios of NOx were measured at 5 Hz frequency using a custom-built three-channel

thermal dissociation-laser induced fluorescence (TD-LIF) instrument. The multipass LIF cells, fluorescence collection, long-

pass wavelength filtering (for λ >700 nm), and photon counting details have been previously described (Thornton et al., 2000;

Day et al., 2002; Wooldridge et al., 2010). Details specific to this implementation are described below.75

Air was sampled from the aircraft community inlet through PFA Teflon tubing at a rate of ∼6 L/min and split equally

between the three instrument channels. Each measured NO2 by laser-induced fluorescence utilizing a compact green laser
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(Spectra-Physics ExplorerOneXP 532 nm). The laser was pulsed at 80 kHz and the 1.7 Watt average power was split between

the three cells. Earlier versions of the instrument used a dye laser tuned on and off a narrow rovibronic NO2 resonance at 585.1

nm. Experience over a wide variety of conditions had demonstrated the off-line signal did not depend on the sample, other than80

from aerosol particles and that could be eliminated by adding a Teflon membrane filter. Moving to nonresonant excitation at

532 nm provided full-time coverage at 5 Hz along with lower complexity and more robust performance of the laser system.

Maintaining the LIF cells at low pressure (∼0.4 kPa) was no longer required to avoid line-broadening but was still desirable to

extend the NO2 fluorescence lifetime for time-gated photon counting to reject prompt laser scatter. Instrument zeros were run

using ambient air scrubbed of NOx every 20 minutes in flight to correct for any background drift during the flights. In addition,85

calibrations were performed in-flight every 60 minutes using a NO2 in N2 calibration cylinder (Praxair, 5.5 ppm, Certified

Standard grade) diluted with scrubbed air.

NO2 was measured directly in the first channel, with the sample passing only through a particle filter and a flow-limiting

orifice before the cell. NOx was measured in the second by adding O3 (generated with 184.5 nm light and a flow of scrubbed

and dried air) to convert NO to NO2 before detection. A 122 cm length of 0.4 cm i.d. tubing served as the O3+NO reactor,90

providing 4 seconds of reaction time before the orifice. The third channel was used to measure the sum of higher nitrogen

oxides (e.g. organic nitrates and nitric acid) by thermal dissociation to NO2 with an inline oven (∼500 C) before LIF detection.

3 Flux and footprint calculation

3.1 Pre-processing

The observed 10 Hz vertical wind speeds are downscaled to 5 Hz in order to match the time resolution of NOx measurements.95

The full observation data set breaks into segments with continuous wind and NOx measurements. The segment window is

selected if the length is larger than 10 km and the height variation is less than 200 m. We also filter out measurements when

aircraft roll angles are larger than 8 degrees to avoid perturbation in the vertical wind due to aircraft activity. While most of the

measurements are within the planetary boundary layer (PBL), the airplane arose above the boundary layer occasionally and

these observations above PBL are removed in later analysis. The PBL heights are determined using the sharp gradient in the100

dew point, water concentration, toluene concentration and temperature at the soundings conducted during the voyage, and we

interpolate the PBL heights to the full duration of the flight. The PBL heights agree well against the hourly PBL heights from

the High-Resolution Rapid Refresh (HRRR) product (Figure. S2).

We adjust for the lag time between the meteorology measurements and the TD-LIF measurements by shifting the time of

TD-LIF observation within the time window of ± 4 seconds until the covariance with the vertical wind speed is maximized105

(Figure. S4). As the time lag is assumed to be due to differences in the clocks of the two instruments and the transit time of air

through the TD-LIF instrument, we assume that the lag time for each flight is constant. We use the median lag time from each

flight for all segments collected on the same day.
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3.2 Continuous wavelet transformation

The continuous wavelet transformation (CWT) parameterization decomposes the time series (x(t)) into a range of frequencies110

and represents it as the convolution of the time series with a wavelet function (Torrence and Compo, 1998).

W (a,b) =

−∞∫
∞

x(t)ψ∗
a,b(t)dt (1)

ψ∗
a,b(t) =

1√
a
ψ0(

t− b

a
) (2)

where W (a,b) is the wavelet coefficient; ψ∗
a,b(t) is the wavelet function, which is based on a “mother” wavelet ψ0 and is

adjusted with a transition parameter b and a scale parameter a. The transition parameter determines the location of the “mother”115

wavelet and the scale parameter defines the frequency. We use the Morlet wavelet as the “mother” wavelet.

ψ0 = π−1/4e6iηe−η2/2 (3)

The Morlet wavelet has been widely applied to represent turbulence in the atmosphere due to a reasonable localization in

the frequency domain and a good ability of edge detection (Schaller et al., 2017).

Time domain scales are increased linearly with the increment of the time resolution (δt, 0.2s), and N is the number of data120

points. Frequency domain scales are represented by an exponential array of scale parameters aj with the increment δj of 0.25s.

The smallest frequency scale is the Nyquist frequency, which is twice the time resolution (0.4s).

bn =Nδt (4)

aj = a0 × 2jδj (5)

For two simultaneous time series of NOx (Wc(a,b)) and vertical wind speed (Ww(a,b)), we first detrend them by subtracting125

out the average followed by dividing the standard deviation of a scalar time series. Then we obtain the wavelet cross-spectrum

following Eqn. 9. The Morlet wavelet-specific reconstruction factor Cδ is 0.776. We then sum up over the full frequency scales

to yield a time series of flux (Eqn. 10).

W̄c =
1

N

N∑
i=1

Wci and W̄w =
1

N

N∑
i=1

Wwi (6)

σ̂2
c =

1

N − 1

N∑
i=1

(Wci − W̄ci)
2 and σ̂2

w =
1

N − 1

N∑
i=1

(Wwi − W̄wi)
2 (7)130

W
′

c(a,b) =
(Wc(a,b)− W̄c)

σ̂c
and W

′

w(a,b) =
(Ww(a,b)− W̄w)

σ̂w
(8)

Ec,w(j) =
δt

Cδ

1

N

N−1∑
n=0

[W
′

c(a,b) ·W
′

w
∗(a,b)] (9)

F (t) = σ̂cσ̂wc′w′ = σ̂cσ̂w
δt

Cδ

δj

N

N−1∑
n=0

J∑
j=0

[W
′

c(a,b) ·W
′∗
w (a,b)]

a(j)
(10)
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Figure 1. a) The variance of NOx and vertical wind speed, b) frequency and time-resolved wavelet power spectrum with the cone of influence

shown as a black dotted line, c) the integrated fluxes from the raw data points are shown in black, the fluxes after moving averaging and COI

filtering are shown in green. d) the distribution map of flux re-sampled at 500m. The black lines show the 90th percentiles of the footprints

and the thick black line denotes the contours of all footprints.

Figure 1 exhibits an example of CWT flux calculation. Figure 1 (a) shows the detrended NOx and vertical wind speed in

a straight segment of ∼ 50 km. The detrending is realized by subtracting out the average followed by dividing the standard135

deviation of a scalar time series. Both time series are decomposed using CWT algorithm to yield the cross-power spectrum

shown in Figure 1 (b). Due to the finite length in time, the wavelet power spectrum is prone to higher uncertainties closer to the

edge (Mauder et al., 2007). The regions of the wavelet power spectrum where the edge effects are the largest are identified as

the Cone of Influence (COI). Data points containing >80% spectral power within the cone of influence are removed for quality

control. The power spectrum is then integrated over all frequencies to the time series of NOx flux (Figure 1 (c)). We processed140

the integrated fluxes as 2 km moving averages to address the influence of large-scale turbulence and then re-sampled them at

500 m.

3.3 Footprint calculation

The footprint describes the contribution of surface regions to the observed airborne flux. We use the KL04-2D parameterization

to calculate a space-resolved footprint map. This KL04-2D parameterization is developed from a 1-D backward Lagrangian145

stochastic particle dispersion model (Kljun et al., 2004). Metzger et al. (2012) implemented a Gaussian cross-wind distribution

function to resolve the dispersion perpendicular to the main wind direction. The input parameters include the height of the

measurements, standard deviation of horizontal and vertical wind speed, horizontal wind direction, boundary layer height,
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surface roughness length, and friction velocity. We obtain the surface roughness length and friction velocity from the HRRR

product. For each flux observation, we calculate the footprint map at the spatial resolution of 500m and then extract the 90%150

contour. Figure 1 (d) depicts the 90% KL04-2D footprint contours of observations resampled to 500 m in one segment. Each

footprint contour is aligned with the horizontal wind direction and is transformed into a geographic coordinate space.

3.4 Filter out NOx fluxes impacted by the off-road vehicle emissions

It is worth noting that croplands includes not only soil NOx emissions but the off-road vehicle emissions. Erroneously attribut-

ing the NOx from off-road vehicle emissions to soil NOx emissions leads to a high bias. While trimethylbenzene was observed155

during RECAP-CA field campaign, Pfannerstill et al. (2023) presented the trimethylbenzene fluxed using the same algorithm

described in Sect.3.2. The trimethylbenzene fluxes are interpolated to match the NOx fluxes in time and are utilized as an

indicator of off-road vehicle emissions over croplands (Tsai et al., 2014). The trimethylbeneze fluxes are categorized into two

groups; the first group presents footprints covering croplands exclusively and the second group presents footprints with mixed

land cover types. Shown in Figure S9, the trimethylbeneze flux is much lower over croplands, a median of 0.003 mg m−2160

h−1 compared to a median of 0.009 mg m−2 h−1 over mixed land cover types including highway and urban areas. Among all

observations over cropland, we identify those with the trimethylbeneze flux larger than 0.02 mg m−2 h−1, which consists of

7% of the total data points, are impacted by the off-road vehicle emissions, and then filter out them in the later analysis. We

also vary the threshold of the trimethylbeneze flux between 0.005 mg m−2 h−1 and 0.04 mg m−2 h−1 and conclude that the

choice of the threshold does not influence the results.165

3.5 Vertical divergence

Extrapolating the airborne flux to surface flux should account for the vertical divergence. The vertical divergence is a result of

multiple processes, including net in-situ production or loss, storage, and horizontal advection.

To investigate the impact of vertical divergence, the flight route includes three vertically stacked racetracks, during which

the segments are close to each other in space but vary in height. After removing the legs that fail the quality control, only one170

racetrack measurement carried out between 14:20 to 15:10 on June 8th presented qualified flux segments, and the vertical dis-

tribution of fluxes is shown in Fig. S4. No consistent increase or decrease of fluxes with increasing height is detected during the

racetrack in this study because the vertical divergence is hampered by emission heterogeneity. Shown in Fig. S7, the footprint

map for each segment at various altitudes covers regions with high heterogeneity. Therefore, we use an alternative approach to

calculate the vertical divergence. Instead of extracting racetrack measurements, we collect a subset of flux measurements dur-175

ing the whole field campaign based on the footprint coverage. Only fluxes with footprints covering croplands exclusively are

included to avoid emission heterogeneity. We calculate the ratio of measurement heights relative to the PBL height (z/zi) and

98% of selected fluxes are located within 70% of the PBL height and they are divided into 7 bins of z/zi with uniform width.

We then perform a linear fit for the binned median fluxes versus z/zi to calculate the vertical correction factor (C = slope
intercept ).

This correction factor is used to linearly extrapolated the fluxes at the measurement height (Fz) to fluxes at the surface (F0)180
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Figure 2. Vertical profiles of measured fluxes above croplands during RECAP-CA field campaign binned by the ratio of measurement height

and PBL height (z/zi). The points represent the median flux within each bin, and the error bars represent the standard deviation. The red

dashed line shows a linear fit for median fluxes versus relative height.

(Eqn. 11). After vertical divergence correction, the surface fluxes are on average 26% higher than the fluxes at the measurement

heights.

F0 =
Fx

1+C z
zi

(11)

3.6 Data qualify control and uncertainty analysis

The flux detection limit does not only depend on the signal-to-noise ratio of the NOx measurement, but also varies with wind185

speed and atmospheric stability. Following Langford et al. (2015), we calculate the detection limit of flux (LoD) before the

moving and spatial average are applied. For each segment, the observed NOx is replaced with a white noise time series and is

then feed into the CWT to yield the corresponding time series of “noise” flux. The random error affecting the flux (σNOx,noise)

is defined as the standard deviation of this noise-derived flux, and LoD is defined as 2×σNOx,noise (95th confidence level).

Among 142 segments, Figure 3 (a) shows the distribution of flux LoD among 142 segments. The LoDs range from 0.02 mg N190

m−2 h−1 to 0.30 mg N m−2 h−1, and the average LoD is 0.10 mg N m−2 h−1. To obtain a better constraint on the flux quality,

we compare the LoD against the time series of flux in each segment and filter out 18 segments in which the whole time series

is below the LoD.
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The flux calculation using CWT introduces uncertainty from a variety of sources. We describe systematic errors and random

errors following Wolfe et al. (2018). Systematic errors arise from the under-sampling of high-frequency and low-frequency195

ranges. The CWT algorithm fails to resolve a frequency higher than the Nyquist frequency. Due to the high temporal resolution

(5 Hz), we expect a minimal loss at the high-frequency limit (Figure. S5). The upper limit of systematic error associated with

low frequency is calculated using Eqn. 12 (Lenschow et al., 1994).

SE ≤ 2.2(
z

zi
)0.5

zi
L

(12)

z and L are the measurement heights and the length of segments, respectively. zi are the boundary layer heights from HRRR.200

We calculate the low-frequency error ranges from 1%-5%.

Random errors arise from the noise in the instrument (REnoise) as well as the noise in turbulence sampling (REturb), which

are calculated using Eqn. 13 and Eqn. 14 (Wolfe et al., 2018; Lenschow et al., 1994).

REnoise =

√
σ2
NOx,noise

σ2
w

N
(13)

REturb

F
≤ 1.75(

z

zi
)0.25(

zi
L
)0.5 (14)205

z, L and zi are the same as Eqn. 12, σ2
w is the variance of vertical wind speed. Note that REnoise assumes the noise in

each time step is uncorrelated, therefore, we ignore the moving average step in the uncertainty calculation and N denotes the

number of points used to yield each 500m spatially averaged flux.

Utilizing a constant lag time introduces an additional source of uncertainty. We estimate the uncertainty by comparing the

calculated fluxes using segment-specific and constant lag times across all segments that specific lag times are available. Shown210

in Figure. S4, the difference is less than 25% for 90 percent of the data. Therefore, we attribute an uncertainty of 25% due to

the lag time correction (RElag). While we believe this error is unphysical and that a single lag time is more appropriate, we

include it to be conservative in our estimate of the uncertainties.

Estimating the uncertainty caused by the correction of vertical divergence is tricky. While we conclude that the influence of

vertical divergence is non-negligible, it is ignored in some previous airborne flux studies (e.g. Vaughan et al., 2016; Hannun215

et al., 2020; Vaughan et al., 2021; Drysdale et al., 2022). While the flux is scattered in each vertical intervals in our divergence

calculation, we first bootstrap the flux observations and calculate the uncertainty of correction factor (σC) to 40%. As we see a

significant difference in vertical correction factor on racetrack measurements versus a selected subset of flux observations, we

tentatively set the uncertainty of C to 100%, in order to account for the case of no vertical divergence. Besides, we account for

a 30% uncertainty in the PBL heights.220

We propagate the total uncertainty from each component using Eqn. 16 and the distribution of total uncertainty is shown in

Figure 3 (b). The average uncertainty is 60% and the interquartile of total uncertainty are 48% and 68%. The random error and

the vertical divergence correction dominate the uncertainty and the uncertainty is consistent with previous studies (Wolfe et al.,

2018; Vaughan et al., 2016).
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Figure 3. a) The distribution of segment-based NOx flux detection limit (LoD). b) The distribution of total uncertainty of NOx flux.

σFz
=
√
SE2 +RE2

noise +RE2
turb +RE2

lag (15)225

σF0 =

√
σ2
Fz

(1+C z
zi
)2

+σ2
C(

z

zi
)2(

Fz

(1+C z
zi
)2
)2 +σ2

zi(
Cz

z2i
)2(

Fz

(1+C z
zi
)2
)2 (16)

4 Component flux disaggregation

The overview of observed fluxes across 7 flights over San Joaquin Valley is illustrated in Fig. 4. It shows a distinct spatial

heterogeneity (Figure 4 (a)). For instance, high NOx flux signals are detected when the aircraft was flying above highway

99 between Bakersfield and Visalia. The transect of cities, such as Fresno, capture a substantial enhancement of NOx fluxes.230

Figure 4 (b) exhibits the distribution of airborne fluxes. 90% of the fluxes are positive, demonstrating that our airborne flux

measurements are capable of detecting NOx emissions over the study domain. We attribute the remaining 10% of negative

fluxes to the uncertainties in the flux calculation. The distribution of observed fluxes is right-skewed; the mean and median

observed flux over the SJV is 0.37 mg N m−2 h−1 and 0.25 mg N m−2 h−1, respectively. The interquantile range of flux is

0.11 mg N m−2 h−1 and 0.49 mg N m−2 h−1. 1.2% of extremely high fluxes exceeding 2 mg N m−2 h−1 represents the long235

tail in the flux distribution, which are, like the negative fluxes, most likely caused by the incomplete sampling of the spectrum

of eddies driving the fluxes.

As discussed in Sect. 3.3, we then calculate the footprint for each flux observation during the RECAP field campaign. Figure

4 (a) shows the 90% footprint extent in grey. Fig. S8 shows that the 90% extent for the calculated footprints ranges from 0.16

to 12 km with a mean extent of 2.8 km. The KL04-2D footprint algorithm has been applied to airborne flux analysis over240
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London and in that study, the 90% footprint extents range from 3 km to 12 km from the measurement (Vaughan et al., 2021).

While the largest footprint extent is comparable with those from Vaughan et al. (2021), our calculated footprints mostly have

a smaller extent as 62% of the footprint extents are within 3 km of the aircraft flight track. We attribute the small footprints to

the stagnant weather conditions and weaker horizontal wind advection compared to London. The mean wind speed is 2.9 m/s

for full observation data sets and 2.4 m/s for those data points with footprint extents less than 3 km. The largest footprint extent245

corresponds to observations at the foothills, due to higher altitude relative to the boundary layer height and stronger horizontal

wind advection.

The region covered by the footprints is composed of mixed land cover types. We use the 2018 USDA CropScape database

(https://nassgeodata.gmu.edu/CropScape/) to describe the land cover types. The resolution has been degraded from the native

30m resolution to 500m. For each grid, the land cover type is assigned if a land type makes up more than 50% of the 500m grid250

cell. We generalize a “soil” land cover type if the land cover type is identified as either cropland or grassland. The grids classi-

fied as “developed” in CropScape are dominated by anthropogenic activities including transportation and fuel combustion. We

overlay the national highway network and categorize the grids containing highways as “highway” land types. The remaining

grids are classified as “urban” and they correspond to the area with heavy populations in the absence of highways. The dis-

tinction between “highway” and “urban” land type is utilized to address on-road mobile sources. 37% of the flux observations255

include the highway land type in the 90% footprint extent, 23% of the observations include the urban land type and 96% of the

observations include cultivated soil land type.

To disentangle the flux emanating from different land cover types, we apply the Disaggregation combining Footprint analysis

and Multivariate Regression (DFMR) methodology described in Hutjes et al. (2010). The observed fluxes are treated as the

weighted sum of component fluxes from each land cover type:260

Fobs =

3∑
k=1

wkFk (17)

where k1 to k3 denote highway, urban, and soil land types, wk is the fractional area within the 90% footprint contour and

Fk are the corresponding component fluxes. The multi-linear regression is applied to observations from all flights, consisting

of 4391 data points. We perform the Monte Carlo simulation to identify the uncertainty of the multi-linear regression due to

the flux uncertainty. The resulting statistical uncertainty is shown in Fig.5. The highway land type yields the highest flux of265

0.96 mg N m−2 h−1 with a standard deviation of 0.04 mg N m−2 h−1. The areas classified as urban land type exhibit a flux of

0.43 (±0.02) mg N m−2 h−1, which is ∼ 50% of the highway flux. Most likely the fluxes from highway are even higher than

0.96 mg N m−2 h−1. Note that the land type map is at 500m spatial scale, the grid classified as highway indeed includes both

highway and areas near the highway. If, for example, the highway is only 10% of the true area of the land cover pixel, then the

fluxes on the highway could be as much as 10 times larger. The cultivated soil land type flux of 0.30 (±0.01) mg N m−2 h−1 is270

large. It is about 1/4 the magnitude of the highway flux and half that of the urban flux. As the total area of soil pixels are much

larger than the area of highway or urban pixels, integrated across the SJV, cultivated soil NOx emissions are a major factor.
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Figure 4. a) The map of observed airborne fluxes over 7 flights over the San Joaquin Valley. If the segment overlaps each other, the average

flux is calculated. The grey shade represents the coverage of 90% footprint extents for all flux observations. b) The distribution of full data

sets of observed airborne NOx fluxes.
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Figure 5. Bootstrapped statistical results of multi-linear regression to resolve component fluxes from the highway, urban, and cultivated soil

land types. Each bar represents the average component fluxes from each land type and the black line shows the standard deviation.
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5 Calculation of NOx emission map using airborne NOx fluxes

While these separate component fluxes emphasize the distinction between individual land types at the spatial resolution of the

land cover (500m), we utilize the NOx fluxes to yield an estimate of NOx emission at 4km. For each 4 km grid, we collect the275

observed fluxes whose 90% of the footprint overlaps with this grid area and define the weight rk as the fractional area that the

footprint covers. The emission, in a unit of mg N m−2 h−1, is calculated by the weighted average of flux (Eqn. 18). Only grids

measured by at least five flux observations are considered in order to focus our attention on those pixels for which we have a

statistically representative sample of the emissions.

Emisi =

∑n≥5
k=1 rkFk∑n≥5
k=1 rk

(18)280

The emission is calculated based on the observations from six flights during weekdays(Fig. 6 (a)). The largest reported

weekday emission was on June 03 when the median emission was 0.39 mg N m−2 h−1. The lowest weekday emission was

observed on June 15 with the median emission of 0.14 mg N m−2 h−1. The large daily variation observed in estimated

emissions during weekdays is partially due to the variation in flight routes and footprint coverage. This is illustrated by the

daily estimated emission map shown in Fig. S10.285

As the emission inventories make a distinction between weekdays and weekends and do not account for the daily variation on

different weekdays, we average over the six-weekday flights to yield the best estimate of emission maps over the San Joaquin

Valley derived from flux measurements (Fig. 6 (b)). The median estimated weekday NOx emission over the study domain is

0.26 mg N m−2 h−1 with the interquantile range of 0.14 and 0.46 mg N m−2 h−1. The observed emission map describes high

NOx emissions in the cities of Bakersfield (119◦W, 35.3◦N) and Fresno (119.8◦W, 36.75◦N) and along highway 99.290

5.1 Evaluation of anthropogenic NOx emission inventories

First, we compare the observations to the inventory developed by the California Air Resources Board (CARB). The anthro-

pogenic emissions of NOx consist of mobile sources, stationary sources, and other NOx emissions from miscellaneous pro-

cesses such as residential fuel combustion and managed disposal. In the CARB inventory, the mobile sources are estimated

from EMission FACtor (EMFAC) v1.0.2 (CARB, 2021a) and OFFROAD mobile source emission models (CARB, 2021b). The295

stationary sources are estimated based on the reported survey of facilities within each local jurisdiction and the emission factors

from California Air Toxics Emission Factor (CATEF) database (CARB, 2021c). Hereinafter we utilize “EMFAC” to represent

anthropogenic vehicle-related NOx emissions used in the CARB inventory. An alternative anthropogenic emission inventory

is the fuel-based inventory for vehicle emissions (FIVE), developed by McDonald et al. (2012) and updated by Harkins et al.

(2021). Both emission inventories are at 4 km spatial resolution.300

To disentangle the contribution of different NOx emissions sources, we attribute emissions at grid cells covering either

highway or urban regions to anthropogenic emissions from transportation and fuel combustion, and those at remaining grid

cells are categorized as soil NOx emissions. For each grid cell categorized as anthropogenic emission dominant, we then match

the emission inventories representing the weekday scenario to the same hour and grids of emissions derived from measured
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Figure 6. a) The whisker box plot of observed emissions for each flight, aligned in the order of flight days. The box represents the interquartile

ranges of observed emissions and the line represents the median emission. The whiskers show the maximum and minimum values. b) The

spatial distribution of emission at 4 km over SJV derived from observed fluxes during weekdays. The patch color shows the observed NOx

emission. The edge color denotes the land cover type; the grid cells covering highways in white, those covering urban regions in black, and

the rest of the grid cells that are categorized with cultivated soil land cover types in green. ©OpenStreetMap contributors 2022. Distributed

under the Open Data Commons Open Database License (ODbL) v1.0.

fluxes. The corresponding hour of this estimated emission is rounded to the closest hour of the observation times. Figure 7 and305

Figure S12 show the comparison of observed anthropogenic emissions against EMFAC and FIVE emission inventories. Over

urban regions, the mean and median observed RECAP NOx emission are 0.37 mg N m−2 h−1 and the interquartile range is

0.14 and 0.58 mg N m−2 h−1. Both EMFAC and FIVE yield a good agreement with our measurements; the mean urban NOx

emission are 0.40 and 0.43 mg N m−2 h−1. However, the median urban NOx emission in these inventories is 24% and 22%

lower than the observation, respectively. The estimated NOx emission on grid cells covering highways is more scattered. The310

median estimated NOx emission is 0.24 mg N m−2 h−1. It is lower than on urban grid cells due to spatial averaging and the

fact that most of the highway length is outside the urban regions. The distribution of observed RECAP NOx emissions from

the highway is right-skewed, characterized by an interquartile range of 0.14 and 0.47 mg N m−2 h−1. We also note that over

14



RECAP EMFAC FIVE
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NO
x E

m
iss

io
n 

(m
g/

(m
2  h

r))

Landcover
Urban
Highway

Figure 7. Whisker box plot of observed RECAP anthropogenic NOx emissions from transportation and fuel combustion as well as those

from EMFAC and FIVE emission inventories, separated by highway and urban land cover types. The box is the interquartile range with the

line of the median value. The maximum and minimum emissions are shown by whiskers and the mean emissions are shown in red dots.

Highway 99, the RECAP NOx emission is a factor of 3 higher than average on grid cells near congestion, reflecting the variation

of emission caused by real-time traffic conditions. Both EMFAC and FIVE provide lower NOx emissions over highway grids,315

the median NOx emissions are 37% and 50% of those from the RECAP observations. The highway pixels include a land cover

that is mostly non-highway; typically soil. If soil N emissions are substantially larger than in these inventories, it is possible

that the measurements and bottom-up inventories for highways are in better agreement than indicated by the figure.

5.2 Evaluation of soil NOx scheme

Soil NOx emissions are determined by biogeochemical processes including soil microbe-mediated nitrification and denitrifi-320

cation. Process-based biogeochemical models have been developed to mechanistically represent soil NOx emissions by sim-
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ulating nitrogen interactions in ecological systems, such as DeNitrification-DeComposition (DNDC) (Li et al., 1992, 1994;

Guo et al., 2020) and DayCENT (Del Grosso et al., 2000; Rasool et al., 2019). However, these process-level models are not yet

widely applied to chemical transport models, and the default model configuration uses empirical soil NOx schemes. The Model

of Emissions of Gases and Aerosols from Nature v3 (MEGAN) (Guenther et al., 2012) is the most commonly used scheme325

and is used to predict soil NOx emissions in the CARB emission inventory. It is gridded at 4 km spatial scale and has hourly

time steps. The Biogenic Emission Inventory System (BEIS) is the default scheme to estimate volatile organic compounds

from vegetation and NO from soil developed by the United States Environmental Protection Agency (EPA). We obtain the

hourly BEIS v2.14 soil NOx emission at 4 km during the study period from the Weather Research and Forecasting-Chemistry

model (WRF-Chem) with the same model configuration described in Kim et al. (2022). While soil NOx varies nonlinearly with330

meteorological conditions, soil conditions, and agricultural activities, both MEGAN and BEIS simplify the nonlinearity to an

activity factor (γ), as a function of ambient temperature, leaf area index, and leaf age. A recently developed soil NOx scheme,

the Berkeley Dalhousie Iowa Soil NO Parameterization (BDISNP) (Hudman et al., 2012; Sha et al., 2021), is an intermediate

complexity model and includes more details than the other two in order to be more faithful to direct measurements made at

soils and to describe their seasonal and hourly variations. The BDISNP includes parameters representing the effects of soil335

moisture, temperature, and soil nitrogen including fertilizer. Using the same WRF-Chem setup described in Sha et al. (2021),

we also calculate the BDISNP soil NOx emissions during the study period at the spatial resolution of 2 km and re-grid them to

4 km.

Figure. 8 (a) illustrates the range of soil N emissions derived from RECAP observations as compared to these three different

soil NOx schemes. The analysis of the observations exhibits a median cultivated soil NOx emission of 0.26 mg N m−2 h−1;340

the interquartile range of the inferred emission is 0.14 mg N m−2 h−1 and 0.45 mg N m−2 h−1. MEGAN and BEIS both have

an order of magnitude lower emissions with median soil NOx emissions of 0.008, 0.011 mg N m−2 h−1, respectively. The

BDISNP soil NOx scheme shows a median soil NOx emission of 0.14 mg N m−2 h−1. Figure. 8 (b) exhibits a point-by-point

comparison of the observed RECAP and the BDISNP soil NOx emissions showing that there is a correspondence between the

two but the model is 2.2 times lower than the observations. Figure S13 (a) and (d) shows the spatial distribution of soil NOx345

emissions from observation and BDISNP scheme. Both show higher soil NOx emissions between 35.75 ◦N and 36.25 ◦N.

A distinct characteristic of soil NOx emission is its temperature dependence. For instance, Oikawa et al. (2015) identified

unusually high soil NOx emissions in a high-temperature agricultural region based on in-situ observations. The temperature-

driven increase in soil NOx emission raises concerns in the future warmer climate, resulting in a larger contribution to O3

pollution (Romer et al., 2018). Here we leverage our flux observations to probe this temperature dependence. We collect350

observed NOx emissions for each flight and select the subset of NOx emissions on grids categorized as cultivated soil land

type. We also collect corresponding mean soil temperature from WRF-Chem and match them to observed NOx emissions both

in time and space. A range of soil temperature between 295K to 304K is observed. We then bin observed soil NOx emissions

to three soil temperature categories, each of which has 4K intervals. The median soil NOx emissions increase from 0.22 mg

N m−2 h−1 to 0.29 mg N m−2 h−1 with the median soil temperature increasing from 296 K to 300 K. As the response to355

soil temperature is incorporated in the BDISNP scheme, we also bin the BDISNP parameterized soil NOx emissions into the
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(a)

(b)

Figure 8. a) The whisker box plot of observed soil NOx emissions and parameterized soil NOx emissions from MEGAN, BEIS and BDISNP

schemes. The mean soil NOx emissions are shown in black dots. b) The scatter plot of soil NOx emissions calculated from BDISNP scheme

and from flux measurements. The dashed black is the least-square linear fit.
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Figure 9. The dependence of soil NOx emissions on soil temperature from both flux measurements (gray) and BDISNP scheme (orange).

Both observed and BDISNP soil NOx emissions are binned based on mean soil temperature from WRF-Chem. Three soil temperature bins

are described with 4k intervals. The whisker box shows the distribution and the black dot shows the mean within each bin, the line connects

median soil NOx emissions across three bins.

same soil temperature categories. Both the RECAP measured flux and the BDISNP modeled soil NOx emissions exhibit an

approximately 33% increase over the range of soil temperature shown.

5.3 Discussion of soil NOx emissions

Soil NOx emissions in California have been studied in field experiments. Matson et al. (1997) measured soil NOx emissions360

from nine dominant crop types in SJV and reported mean fluxes of 0.01-0.09 mg N m−2 h−1. They also reported a large

variation of measured NOx flux among crops and among different fields of the same crop; the highest measured NOx flux is

0.17 mg N m−2 h−1 due to the fertilizer application and soil moisture characteristics. Horwath and Burger (2013) observed an

average flux of 0.05-0.28 mg N m−2 h−1 at mid-days during summertime from five crops in California, and the highest NOx

flux is >4 mg N m−2 h−1 in systems receiving large N inputs resulting in high concentrations of ammonium. Oikawa et al.365
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(2015) observed soil NOx emissions in a high-temperature fertilized agricultural region of the Imperial Valley, CA, ranging

between -0.02 and 3.2 mg N m−2 h−1. They also conducted control experiments to investigate the soil NOx emission responses

to fertilization and irrigation. The highest soil NOx flux was reported ∼10 days after the fertilizer at the soil volumetric water

content of 30% and the soil temperature of ∼313K.

The mean soil NOx flux, 0.32 mg N m−2 h−1, derived in our flux measurements is higher than the mean fluxes reported in370

Matson et al. (1997) and Horwath and Burger (2013), however, the range of estimated soil NOx flux is within those in Horwath

and Burger (2013) and Oikawa et al. (2015). Fertilizer is likely the primary contributor to the higher mean soil NOx flux in our

study. The RECAP-CA field campaign was conducted in June, right after the month of peak fertilizer use in SJV (Guo et al.,

2020). Shown in Oikawa et al. (2015), soil NOx flux can increase up to 5-fold within 20 days of fertilizer. The higher mean soil

NOx flux is also contributed by higher soil temperature. In our study, the mean soil temperature is 299K with a range between375

295K and 304K, whereas the observations in Horwath and Burger (2013) and Oikawa et al. (2015) spread over a wider range

of soil temperature, 288K-315K. Consistent with our study, the temperature dependence of soil NOX emission is observed in

these field experiments. Horwath and Burger (2013) reported a 2.5-3.5 fold increase in NOx fluxes with 10-degree increase in

soil temperature. Oikawa et al. (2015) showed that the temperature dependence of soil NOx emission is non-linear; a steeper

increase in soil NOx emission was observed with the soil temperature exceeding 295K.380

It is worth noting the limitation of estimated soil NOx emissions in our study. First of all, we are unable to investigate the

dependence of soil NOx emissions on meteorological drivers other than soil temperature, such as soil moisture, as modeled soil

moisture presents very small variation during the field campaign. Second, as our measurements only cover limited cropland

areas in SJV over a short time period and it is around the time of fertilizer use, we cannot scale the estimated soil NOx emission

to the whole year or to the total cropland areas in California. Last, in the absence of ozone and PM2.5 observations, we cannot385

investigate the impact of soil NOx emission on air quality. However, as the SJV is in the NOx limited regime (Pusede et al.,

2014), we expect a model that captures the soil NOx more accurately will produce higher ozone. Future work is needed to

further advance our understanding of soil NOx emission and its role in urban and rural air pollution.

6 Conclusions

We performed airborne NOx flux measurements during RECAP-CA field campaign over the San Joaquin Valley. Seven flights390

were made over the SJV in June 2021. When combined with footprint and land cover information, we resolve spatial hetero-

geneity in landscape flux. The component fluxes are estimated based on the multi-linear regression and exhibit statistically

significant differences. The component fluxes are the highest from highways at 0.96 mg N m−2 h−1. Cultivated soil land types

emit a non-negligible flux of 0.30 mg N m−2 h−1. The airborne flux observations are projected to a 4 km grid spacing to yield

an estimated emission map over the SJV. We utilize this map to evaluate emission inventories commonly used in photochemical395

modeling. The anthropogenic emission inventories, EMFAC and FIVE, agree well with estimated mean NOx emissions over

urban regions. However, the widely used, but not biogeochemical process-based, models for soil NOx emissions underesti-

mate emissions by an order of magnitude or more in the SJV, leading to a poor assessment of the relative roles of mobile and
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agriculture sources of NOx in the region. The BDISNP model as adapted by Sha et al. (2021) results in a better comparison

with the observations. Even though it is still lower by a factor of 2, we show it yields a similar spatial pattern and soil tem-400

perature dependence as observed. Variations of this model are embedded in CMAQ (Rasool et al., 2019) and GEOS-CHEM

(Wang et al., 2021) and have been implemented in WRF-CHEM by(Sha et al., 2021). Studies, where soil NOx is potentially

important, should make use of these codes, all of which are more consistent with observations at multiple scales.
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