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Abstract. Nitrogen oxides (NOx) are principle components of air pollution and serve as important ozone precursors. As the San

Joaquin Valley (SJV) experiences some of the worst air quality in the United States, reducing NOx emissions is a pressing need,

yet quantifying current emissions is complicated due to a mixture of mobile and agriculture sources. We performed airborne

eddy covariance flux measurements during the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field

campaign in June 2021. Combining footprint calculations and land cover statistics, we disaggregate the observed fluxes into5

component fluxes characterized by three different land cover types. On average we find emissions of 0.95 mg N m−2 h−1 over

highways, 0.43 mg N m−2 h−1 over urban areas and 0.30 mg N m−2 h−1 over croplands. The calculated NOx emissions using

flux observations are utilized to evaluate anthropogenic emission inventories and soil NOx emission schemes. We show that

two anthropogenic inventories for mobile sources, EMFAC (EMssion FACtor) and FIVE (Fuel-based Inventory for Vehicle

Emissions), yield strong agreement with emissions derived from measured fluxes over urban regions. Three soil NOx schemes,10

including MEGAN v3 (Model of Emissions of Gases and Aerosols from Nature), BEIS v3.14 (Biogenic Emission Inventory

System) and BDISNP (Berkeley Dalhousie Iowa Soil NO Parameterization), show substantial underestimates over the study
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domain. Compared to the cultivated soil NOx emissions derived from measured fluxes, MEGAN and BEIS are lower by more

than one order of magnitude and BDISNP is lower by a factor of 2.2. Despite the low bias, observed soil NOx emissions and

BDISNP present a similar spatial pattern as well as temperature dependence. We conclude that soil NOx is a key feature of the15

NOx emissions in the SJV and that a biogeochemical process-based model of these emissions is needed to simulate emissions

for modeling air quality in the region.

1 Introduction

Nitrogen oxides (NOx � NO + NO2) are important trace gases that affect both the gas and aerosol phases of tropospheric

chemistry. NOx regulates the concentrations of the primary atmospheric oxidant, hydroxyl radicals (OH), and serves as the20

catalyst for the formation of ozone (O3). NOx also affects the formation of inorganic nitrate aerosol through the production

of nitric acid (HNO3) and organic nitrates (RONO2) and plays a role in secondary organic aerosol (SOA) production. NOx,

O3 and aerosol are all detrimental to human health, triggering respiratory diseases (Kampa and Castanas, 2008; Hakeem et al.,

2016) and leading to premature death (Lelieveld et al., 2015).

NOx is predominantly emitted from anthropogenic sources, including light and heavy-duty transportation, fuel combustion,25

and biomass burning. Among these sectors transportation is the largest in the United States (EPA, 2016). Strict regulations

have been implemented to control NOx emissions. Three-way catalysts have effectively reduced emissions from gasoline-

powered passenger vehicles. The application of emission control systems on coal power plants has reduced NOx emissions

(De Gouw et al., 2014). The California Air Resources Board (CARB) has proposed Heavy-Duty Engine and Vehicle Omnibus

Regulation and Associated Amendments and target for 90% reduction in per-vehicle heavy-duty NOxemission by 2031(CARB,30

2016). The regulation of mobile sources leads to an increasing importance of natural NOx sources, such as lightning and soil

emissions. Soil NOx is released as a byproduct of microbial nitrification and denitrification (Andreae and Schimel, 1990).

While the biogeochemistry of soil NOx emission is well established, this biogenic source involves a complex interaction of

soil microbial activity, soil nitrogen (N) content. Besides, agriculture activities, such as the use of fertilizers, lead to a substantial

enhancement of soil NOx emissions (Phoenix et al., 2006).35

Currently, the San Joaquin Valley (SJV) in California experiences some of the most severe air pollution in the United States.

The SJV cities, Visalia, Fresno, and Bakersfield are among the top ten most polluted cities for both ozone and particulate matter

(American Lung Association, 2020). In order to implement appropriate emission control efforts, identifying the contribution

of different NOx emissions are particularly important for the SJV as it features a complex mixture of emissions from fuel

combustion and soil emissions associated with agriculture. The contribution of soil NOx emissions remains highly uncertain.40

While Guo et al. (2020) attribute approximately 1.1% of anthropogenic NOx emissions in California to soil NOx, Almaraz et al.

(2018) argued that due to growing N fertilizer use, the SJV has soil NOx emissions of 24 kg of N ha−1 year−1, contributing

20-51% of the NOx budget of the entire state of California. Similarly, Sha et al. (2021) estimated that 40.1% of the total NOx

emissions over California in July 2018 are from soils.
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Airborne eddy covariance (EC) flux measurements provide a powerful tool to investigate the emission strength of atmo-45

spheric constituents at landscape scales. It has been applied to assess the surface exchanges of greenhouse houses (GHGs)

including CO2 and methane (CH4) (Mauder et al., 2007; Yuan et al., 2015; Sayres et al., 2017; Hannun et al., 2020). In recent

years it has been extended to study emissions of volatile organic compounds and NOx over a megacity (Karl et al., 2009;

Vaughan et al., 2021), vegetation (Karl et al., 2013; Misztal et al., 2014; Wolfe et al., 2015; Kaser et al., 2015; Yu et al., 2017;

Gu et al., 2017), and shale gas production regions (Yuan et al., 2015). Compared to the traditional EC measurements from in-50

struments mounted at a fixed location on a tower, wavelet-based airborne EC measurements allow for larger spatial assessment

and are well suited to regions with inhomogeneous and non-stationary source distributions (Sühring et al., 2019).

In this study, we present airborne EC flux measurements obtained during seven flights of a Twin Otter aircraft over the San

Joaquin Valley in California. Companion studies of NOx emissions over Los Angeles (Nussbaumer et al., 2023) and VOC

(Pfannerstill et al., 2023) and GHG fluxes (Schulze et al. in prep) will be presented separately. We utilize continuous wavelet55

transformation to calculate the NOx flux (Sect. 3). In conjunction with footprint calculations and land classification, we explore

the spatial heterogeneity of NOx emissions and identify component fluxes from the highway, urban, and soil land types (Sect.

4). We also utilize the NOx emissions derived from flux measurements to evaluate anthropogenic emission inventories and soil

NOx schemes (Sect. 5).

2 Measurements60

The airborne EC flux measurements were conducted on a Twin Otter research aircraft operated by the Naval Postgraduate

School (NPS) during the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. The

RECAP-CA field campaign was conducted between June 1st to June 22nd in California, including 7 days of measurements

over the San Joaquin Valley and 9 days of measurements over Los Angeles. The flight path was designed with long straight

legs to ensure good quality of flux measurements (Figure S1) (Karl et al., 2013). The aircraft flew slowly, at the airspeed of65

50-60 m/s, and cruised at a low height of� 300 m above ground. The aircraft took off at�11:00 local time at Burbank Airport

and landed at �18:00 local time.

The standard instruments aboard the aircraft are described in (Karl et al., 2013) and include total and dew point temperature,

barometric and dynamic pressures, wind direction and wind speed, total airspeed, slip- and attack angles, GPS latitude, GPS

longitude, GPS altitude, pitch, roll, and heading. These measurements are at 10 Hz temporal resolution. VOCs were measured70

at 10 Hz time resolution by Vocus proton transfer reaction time of flight mass spectrometer (Vocus PTR-ToF-MS) as described

in Pfannerstill et al. (2023). Mixing ratios of NOx were measured at 5 Hz frequency using a custom-built three-channel

thermal dissociation-laser induced fluorescence (TD-LIF) instrument. The multipass LIF cells, fluorescence collection, long-

pass wavelength filtering (for � >700 nm), and photon counting details have been previously described (Thornton et al., 2000;

Day et al., 2002; Wooldridge et al., 2010). Details specific to this implementation are described below.75

Air was sampled from the aircraft community inlet through PFA Teflon tubing at a rate of �6 L/min and split equally

between the three instrument channels. Each measured NO2 by laser-induced fluorescence utilizing a compact green laser
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(Spectra-Physics ExplorerOneXP 532 nm). The laser was pulsed at 80 kHz and the 1.7 Watt average power was split between

the three cells. Earlier versions of the instrument used a dye laser tuned on and off a narrow rovibronic NO2 resonance at 585.1

nm. Experience over a wide variety of conditions had demonstrated the off-line signal did not depend on the sample, other than80

from aerosol particles and that could be eliminated by adding a Teflon membrane filter. Moving to nonresonant excitation at

532 nm provided full-time coverage at 5 Hz along with lower complexity and more robust performance of the laser system.

Maintaining the LIF cells at low pressure (�0.4 kPa) was no longer required to avoid line-broadening but was still desirable to

extend the NO2 fluorescence lifetime for time-gated photon counting to reject prompt laser scatter. Instrument zeros were run

using ambient air scrubbed of NOx every 20 minutes in flight to correct for any background drift during the flights. In addition,85

calibrations were performed in-flight every 60 minutes using a NO2 in N2 calibration cylinder (Praxair, 5.5 ppm, Certified

Standard grade) diluted with scrubbed air.

NO2 was measured directly in the first channel, with the sample passing only through a particle filter and a flow-limiting

orifice before the cell. NOx was measured in the second by adding O3 (generated with 184.5 nm light and a flow of scrubbed

and dried air) to convert NO to NO2 before detection. A 122 cm length of 0.4 cm i.d. tubing served as the O3+NO reactor,90

providing 4 seconds of reaction time before the orifice. The third channel was used to measure the sum of higher nitrogen

oxides (e.g. organic nitrates and nitric acid) by thermal dissociation to NO2 with an inline oven (�500 C) before LIF detection.

3 Flux and footprint calculation

3.1 Pre-processing

The observed 10 Hz vertical wind speeds are downscaled to 5 Hz in order to match the time resolution of NOx measurements.95

The full observation data set breaks into segments with continuous wind and NOx measurements. The segment window is

selected if the length is larger than 10 km and the height variation is less than 200 m. We also filter out measurements when

aircraft roll angles are larger than 8 degrees to avoid perturbation in the vertical wind due to aircraft activity. While most of the

measurements are within the planetary boundary layer (PBL), the airplane arose above the boundary layer occasionally and

these observations above PBL are removed in later analysis. The PBL heights are determined using the sharp gradient in the100

dew point, water concentration, toluene concentration and temperature at the soundings conducted during the voyage, and we

interpolate the PBL heights to the full duration of the flight. The PBL heights agree well against the hourly PBL heights from

the High-Resolution Rapid Refresh (HRRR) product (Figure. S2).

We adjust for the lag time between the meteorology measurements and the TD-LIF measurements by shifting the time of

TD-LIF observation within the time window of � 4 seconds until the covariance with the vertical wind speed is maximized105

(Figure. S4). As the time lag is assumed to be due to differences in the clocks of the two instruments and the transit time of air

through the TD-LIF instrument, we assume that the lag time for each flight is constant. We use the median lag time from each

flight for all segments collected on the same day.
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3.2 Continuous wavelet transformation

The continuous wavelet transformation (CWT) parameterization decomposes the time series (x(t)) into a range of frequencies110

and represents it as the convolution of the time series with a wavelet function (Torrence and Compo, 1998).

W (a;b) =

�1Z

1

x(t) �
a;b (t)dt (1)

 �
a;b (t) =

1
p

a
 0(

t � b
a

) (2)

whereW (a;b) is the wavelet coef�cient; �
a;b (t) is the wavelet function, which is based on a “mother” wavelet 0 and is

adjusted with a transition parameterband a scale parametera. The transition parameter determines the location of the “mother”115

wavelet and the scale parameter de�nes the frequency. We use the Morlet wavelet as the “mother” wavelet.

 0 = � � 1=4e6i� e� � 2 =2 (3)

The Morlet wavelet has been widely applied to represent turbulence in the atmosphere due to a reasonable localization in

the frequency domain and a good ability of edge detection (Schaller et al., 2017).

Time domain scales are increased linearly with the increment of the time resolution (�t , 0.2s), and N is the number of data120

points. Frequency domain scales are represented by an exponential array of scale parametersaj with the increment�j of 0.25s.

The smallest frequency scale is the Nyquist frequency, which is twice the time resolution (0.4s).

bn = N�t (4)

aj = a0 � 2j�j (5)

For two simultaneous time series ofNOx (Wc(a;b)) and vertical wind speed (Ww (a;b)), we�rst detrendthemby subtracting125

out theaveragefollowedby dividing thestandarddeviationof ascalartimeseries.Thenweobtain the wavelet cross-spectrum

following Eqn. 6. The Morlet wavelet-speci�c reconstruction factorC� is 0.776. We then sum up over the full frequency scales

to yield a time series of �ux (Eqn. 7).

=
1
N

NX

i =1

Wci and =
1
N

NX

i =1

Wwi
2
c =

1
N � 1

NX

i =1

(Wci � )2 and 2
w =

1
N � 1

NX

i =1

(Wwi � )2W
0

c (a;b) =
(Wc(a;b) � �Wc)

�̂ c
and W

0

w (a;b) =
(Ww (a;b) � �Ww )

�̂ w
Ec;w (j ) =

�t
C�

1
N

N � 1X

n =0

[Wc
0
(a;b) � Ww

0� (a;b)]

(6)

F (t) = cw c0w0= cw
�t
C�

�j
N

N � 1X

n =0

JX

j =0

[W
0

c (a;b) � W
0�
w (a;b)]

a(j )
[Wc(a;b) � W �

w (a;b)]
a(j )

:::::::::::::::::

(7)130

Figure 1 exhibits an example of CWT �ux calculation. Figure 1 (a) shows thedetrended
:::::::::
normalizedNOx and vertical wind

speed in a straight segment of� 50 km. Thedetrending
:::::::::::
normalization is realized by subtracting out the average followed by

dividing the standard deviation of a scalar time series. Both time series are decomposed using CWT algorithm to yield the
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Figure 1. a) The variance of
::::::::
normalizedNOx and vertical wind speed, b) frequency and time-resolved wavelet power spectrum with the

cone of in�uence shown as a black dotted line, c) the integrated �uxes from the raw data points are shown in black, the �uxes after moving

averaging and COI �ltering are shown in green. d) the distribution map of �ux re-sampled at 500m. The black lines show the 90th percentiles

of the footprints and the thick black line denotes the contours of all footprints.

cross-power spectrum shown in Figure 1 (b). Due to the �nite length in time, the wavelet power spectrum is prone to higher

uncertainties closer to the edge (Mauder et al., 2007). The regions of the wavelet power spectrum where the edge effects are the135

largest are identi�ed as the Cone of In�uence (COI). Data points containing >80% spectral power within the cone of in�uence

are removed for quality control. The power spectrum is then integrated over all frequencies to the time series ofNOx �ux

(Figure 1 (c)). We processed the integrated �uxes as 2 km moving averages to address the in�uence of large-scale turbulence

and then re-sampled them at 500 m.

3.3 Footprint calculation140

The footprint describes the contribution of surface regions to the observed airborne �ux. We use the KL04-2D parameterization

to calculate a space-resolved footprint map. This KL04-2D parameterization is developed from a 1-D backward Lagrangian

stochastic particle dispersion model (Kljun et al., 2004). Metzger et al. (2012) implemented a Gaussian cross-wind distribution

function to resolve the dispersion perpendicular to the main wind direction. The input parameters include the height of the

measurements, standard deviation of horizontal and vertical wind speed, horizontal wind direction, boundary layer height,145

surface roughness length, and friction velocity. We obtain the surface roughness length and friction velocity from the HRRR

product. For each �ux observation, we calculate the footprint map at the spatial resolution of 500m and then extract the 90%
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contour. Figure 1 (d) depicts the 90% KL04-2D footprint contours of observations resampled to 500 m in one segment. Each

footprint contour is aligned with the horizontal wind direction and is transformed into a geographic coordinate space.

3.4 Filter out NOx �uxes impacted by the off-road vehicle emissions150

It is worth noting that croplands includes not only soil NOx emissions but the off-road vehicle emissions. Erroneously attribut-

ing theNOx from off-road vehicle emissions to soilNOx emissions leads to a high bias. While trimethylbenzene was observed

during RECAP-CA �eld campaign, Pfannerstill et al. (2023) presented the trimethylbenzene �uxed using the same algorithm

described in Sect.3.2. The trimethylbenzene �uxes are interpolated to match theNOx �uxes in time and are utilized as an

indicator of off-road vehicle emissions over croplands (Tsai et al., 2014). The trimethylbeneze �uxes are categorized into two155

groups; the �rst group presents footprints covering croplands exclusively and the second group presents footprints with mixed

land cover types. Shown in Figure S9, the trimethylbeneze �ux is much lower over croplands, a median of 0.003 mg m� 2 h� 1

compared to a median of 0.009 mg m� 2 h� 1 over mixed land cover types including highway and urban areas.
:::
No

:::::::::
correlation

:::::::
between

:::::::::::::
trimethylbeneze

::::
�ux

:::
and

::::
NOx::::

�ux
::
is

:::::
found

::::
over

:::::::::
croplands. Among all observations over cropland, we identify those

with the trimethylbeneze �ux larger than 0.02 mg m� 2 h� 1, which consists of 7% of the total data points, are impacted by the160

off-road vehicle emissions, and then �lter out them in the later analysis. We also vary the threshold of the trimethylbeneze �ux

between 0.005 mg m� 2 h� 1 and 0.04 mg m� 2 h� 1 and conclude that the choice of the threshold does not in�uence the results.

3.5 Vertical divergence

Extrapolating the airborne �ux to surface �ux should account for the vertical divergence. The vertical divergence is a result of

multiple processes, including net in-situ production or loss, storage, and horizontal advection.165

To investigate the impact of vertical divergence, the �ight route includes three vertically stacked racetracks, during which

the segments are close to each other in space but vary in height. After removing the legs that fail the quality control, only one

racetrack measurement carried out between 14:20 to 15:10 on June 8th presented quali�ed �ux segments, and the vertical dis-

tribution of �uxes is shown in Fig. S4. No consistent increase or decrease of �uxes with increasing height is detected during the

racetrack in this study because the vertical divergence is hampered by emission heterogeneity. Shown in Fig. S7, the footprint170

map for each segment at various altitudes covers regions with high heterogeneity. Therefore, we use an alternative approach to

calculate the vertical divergence. Instead of extracting racetrack measurements, we collect a subset of �ux measurements dur-

ing the whole �eld campaign based on the footprint coverage. Only �uxes with footprints covering croplands exclusively are

included to avoid emission heterogeneity. We calculate the ratio of measurement heights relative to the PBL height (z=zi ) and

98% of selected �uxes are located within 70% of the PBL height and they are divided into 7 bins ofz=zi with uniform width.175

We then perform a linear �t for the binned median �uxes versusz=zi to calculate the vertical correction factor (C = slope
intercept ).

This correction factor is used to linearly extrapolated the �uxes at the measurement height (Fz ) to �uxes at the surface (F0)

(Eqn. 8). After vertical divergence correction, the surface �uxes are on average 26% higher than the �uxes at the measurement

heights.
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Figure 2. Vertical pro�les of measured �uxes above croplands during RECAP-CA �eld campaign binned by the ratio of measurement height

and PBL height (z=zi ). The points represent the median �ux within each bin, and the error bars represent the standard deviation. The red

dashed line shows a linear �t for median �uxes versus relative height.

F0 =
Fx

1 + C z
zi

(8)180

3.6 Data qualify control and uncertainty analysis

The �ux detection limit does not only depend on the signal-to-noise ratio of theNOx measurement, but also varies with wind

speed and atmospheric stability. Following Langford et al. (2015), we calculate the detection limit of �ux (LoD) before the

moving and spatial average are applied. For each segment, the observedNOx is replaced with a white noise time series and is

then feed into the CWT to yield the corresponding time series of “noise” �ux. The random error affecting the �ux (� NO x ;noise )185

is de�ned as the standard deviation of this noise-derived �ux, and LoD is de�ned as 2� � NO x ;noise (95th con�dence level).

Among 142 segments, Figure 3 (a) shows the distribution of �ux LoD among 142 segments. The LoDs range from 0.02 mg N

m� 2 h� 1 to 0.30 mg N m� 2 h� 1, and the average LoD is 0.10 mg N m� 2 h� 1. To obtain a better constraint on the �ux quality,

we compare the LoD against the time series of �ux in each segment and �lter out 18 segments in which the whole time series

is below the LoD.190

The �ux calculation using CWT introduces uncertainty from a variety of sources. We describe systematic errors and random

errors following Wolfe et al. (2018). Systematic errors arise from the under-sampling of high-frequency and low-frequency
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ranges. The CWT algorithm fails to resolve a frequency higher than the Nyquist frequency. Due to the high temporal resolution

(5 Hz), we expect a minimal loss at the high-frequency limit (Figure. S5). The upper limit of systematic error associated with

low frequency is calculated using Eqn. 9 (Lenschow et al., 1994).195

SE � 2:2(
z
zi

)0:5 zi

L
(9)

z andL are the measurement heights and the length of segments, respectively.zi are the boundary layer heights from HRRR.

We calculate the low-frequency error ranges from 1%-5%.

Random errors arise from the noise in the instrument (REnoise ) as well as the noise in turbulence sampling (RE turb ), which

are calculated using Eqn. 10 and Eqn. 11 (Wolfe et al., 2018; Lenschow et al., 1994).200

REnoise =

q
� 2

NO x ;noise � 2
w

N
(10)

RE turb

F
� 1:75(

z
zi

)0:25(
zi

L
)0:5 (11)

z, L andzi are the same as Eqn. 9,� 2
w is the variance of vertical wind speed. Note thatREnoise assumes the noise in each

time step is uncorrelated, therefore, we ignore the moving average step in the uncertainty calculation andN denotes the number

of points used to yield each 500m spatially averaged �ux.205

Utilizing a constant lag time introduces an additional source of uncertainty. We estimate the uncertainty by comparing the

calculated �uxes using segment-speci�c and constant lag times across all segments that speci�c lag times are available. Shown

in Figure. S4, the difference is less than 25% for 90 percent of the data. Therefore, we attribute an uncertainty of 25% due to

the lag time correction (RE lag ). While we believe this error is unphysical and that a single lag time is more appropriate, we

include it to be conservative in our estimate of the uncertainties.210

Estimating the uncertainty caused by the correction of vertical divergence is tricky. While we conclude that the in�uence of

vertical divergence is non-negligible, it is ignored in some previous airborne �ux studies (e.g. Vaughan et al., 2016; Hannun

et al., 2020; Vaughan et al., 2021; Drysdale et al., 2022). While the �ux is scattered in each vertical intervals in our divergence

calculation, we �rst bootstrap the �ux observations and calculate the uncertainty of correction factor (� C ) to 40%. As we see a

signi�cant difference in vertical correction factor on racetrack measurements versus a selected subset of �ux observations, we215

tentatively set the uncertainty ofC to 100%, in order to account for the case of no vertical divergence. Besides, we account for

a 30% uncertainty in the PBL heights.

We propagate the total uncertainty from each component using Eqn. 13 and the distribution of total uncertainty
::
of

:::::
500m

::::::
average

:::::
NOx :::

�ux
:
is shown in Figure 3 (b). The average uncertainty is 60% and the interquartile of total uncertainty are 48%

and 68%. The random error and the vertical divergence correction dominate the uncertainty and the uncertainty is consistent220

with previous studies (Wolfe et al., 2018; Vaughan et al., 2016).
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Figure 3. a) The distribution of segment-basedNOx �ux detection limit (LoD). b) The distribution of total uncertainty ofNOx �ux
:
at

:::::
500m

:::::
spatial

::::::
average.

� F z =
q

SE2 + RE 2
noise + RE 2

turb + RE 2
lag (12)

� F0 =

s
� 2

F z

(1 + C z
zi

)2 + � 2
C (

z
zi

)2(
Fz

(1 + C z
zi

)2 )2 + � 2
zi

(
Cz
z2

i
)2(

Fz

(1 + C z
zi

)2 )2 (13)

4 Component �ux disaggregation

The overview of observed �uxes across 7 �ights over San Joaquin Valley is illustrated in Fig. 4. It shows a distinct spatial225

heterogeneity (Figure 4 (a)). For instance, highNOx �ux signals are detected when the aircraft was �ying above highway

99 between Bakers�eld and Visalia. The transect of cities, such as Fresno, capture a substantial enhancement ofNOx �uxes.

Figure 4 (b) exhibits the distribution of airborne �uxes. 90% of the �uxes are positive, demonstrating that our airborne �ux

measurements are capable of detectingNOx emissions over the study domain. We attribute the remaining 10% of negative

�uxes to the uncertainties in the �ux calculation. The distribution of observed �uxes is right-skewed; the mean and median230

observed �ux over the SJV is 0.37 mg N m� 2 h� 1 and 0.25 mg N m� 2 h� 1, respectively. The interquantile range of �ux is

0.11 mg N m� 2 h� 1 and 0.49 mg N m� 2 h� 1. 1.2% of extremely high �uxes exceeding 2 mg N m� 2 h� 1 represents the long

tail in the �ux distribution, which are, like the negative �uxes, most likely caused by the incomplete sampling of the spectrum

of eddies driving the �uxes.

As discussed in Sect. 3.3, we then calculate the footprint for each �ux observation during the RECAP �eld campaign. Figure235

4 (a) shows the 90% footprint extent in grey. Fig. S8 shows that the 90% extent for the calculated footprints ranges from 0.16
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to 12 km with a mean extent of 2.8 km. The KL04-2D footprint algorithm has been applied to airborne �ux analysis over

London and in that study, the 90% footprint extents range from 3 km to 12 km from the measurement (Vaughan et al., 2021).

While the largest footprint extent is comparable with those from Vaughan et al. (2021), our calculated footprints mostly have

a smaller extent as 62% of the footprint extents are within 3 km of the aircraft �ight track. We attribute the small footprints to240

the stagnant weather conditions and weaker horizontal wind advection compared to London. The mean wind speed is 2.9 m/s

for full observation data sets and 2.4 m/s for those data points with footprint extents less than 3 km. The largest footprint extent

corresponds to observations at the foothills, due to higher altitude relative to the boundary layer height and stronger horizontal

wind advection.

The region covered by the footprints is composed of mixed land cover types. We use the 2018 USDA CropScape database245

(https://nassgeodata.gmu.edu/CropScape/) to describe the land cover types. The resolution has been degraded from the native

30m resolution to 500m. For each grid, the land cover type is assigned if a land type makes up more than 50% of the 500m grid

cell. We generalize a “soil” land cover type if the land cover type is identi�ed as either cropland or grassland. The grids classi-

�ed as “developed” in CropScape are dominated by anthropogenic activities including transportation and fuel combustion. We

overlay the national highway network and categorize the grids containing highways as “highway” land types. The remaining250

grids are classi�ed as “urban” and they correspond to the area with heavy populations in the absence of highways. The dis-

tinction between “highway” and “urban” land type is utilized to address on-road mobile sources. 37% of the �ux observations

include the highway land type in the 90% footprint extent, 23% of the observations include the urban land type and 96% of the

observations include cultivated soil land type.

To disentangle the �ux emanating from different land cover types, we apply the Disaggregation combining Footprint analysis255

and Multivariate Regression (DFMR) methodology described in Hutjes et al. (2010). The observed �uxes are treated as the

weighted sum of component �uxes from each land cover type:

Fobs =
3X

k=1

wk Fk (14)

wherek1 to k3 denote highway, urban, and soil land types,wk is the fractional area within the 90% footprint contour and

Fk are the corresponding component �uxes. The multi-linear regression is applied to observations from all �ights, consisting260

of 4391 data points. We perform the Monte Carlo simulation to identify the uncertainty of the multi-linear regression due to

the �ux uncertainty. The resulting statistical uncertainty is shown in Fig.5. The highway land type yields the highest �ux of

0.96 mg N m� 2 h� 1 with a standard deviation of 0.04 mg N m� 2 h� 1. The areas classi�ed as urban land type exhibit a �ux of

0.43 (� 0.02) mg N m� 2 h� 1, which is� 50% of the highway �ux. Most likely the �uxes from highway are even higher than

0.96 mg N m� 2 h� 1. Note that the land type map is at 500m spatial scale, the grid classi�ed as highway indeed includes both265

highway and areas near the highway. If, for example, the highway is only 10% of the true area of the land cover pixel, then the

�uxes on the highway could be as much as 10 times larger. The cultivated soil land type �ux of 0.30 (� 0.01) mg N m� 2 h� 1 is

large. It is about 1/4 the magnitude of the highway �ux and half that of the urban �ux. As the total area of soil pixels are much

larger than the area of highway or urban pixels, integrated across the SJV, cultivated soilNOx emissions are a major factor.
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