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Abstract. Nitrogen oxides (NOy) are principle components of air pollution and serve as important ozone precursors. As the
San Joaquin Valley (SJV) experiences some of the worst air quality in the United States, reducing NO, emissions is a pressing
need, yet quantifying current emissions is complicated due to a mixture of mobile and agriculture sources. We performed
airborne eddy covariance flux measurements during the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-
CA) field campaign in June 2021. Combining footprint calculations and land cover statistics, we disaggregate the observed
fluxes into component fluxes characterized by three different land cover types. On average we find emissions of 2:95-mg
0.95 mg N m~2 h~! over highways, +24-mg0.43 mg N m~2 h~! over urban areas and 8:79-mg-0.30 mg N m~2 h~! over
croplands. The calculated NO, emissions using flux observations are utilized to evaluate anthropogenic emission inventories
and soil NOy emission schemes. We show that two anthropogenic inventories for mobile sources, EMFAC (EMssion FACtor)
and FIVE (Fuel-based Inventory for Vehicle Emissions), yield stmitar-strong agreement with emissions derived from measured

fluxes over urban regionswith24%-and-22%low-bias;respeetively. Three soil NOy schemes, including MEGAN v3 (Model
of Emissions of Gases and Aerosols from Nature), BEIS v3.14 (Biogenic Emission Inventory System) and BDISNP (Berkeley
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Dalhousie Iowa Soil NO Parameterization), show substantial underestimates over the study domain. Compared to the cultivated
soil NOy emissions derived from measured fluxes, MEGAN and BEIS are lower by more than one order of magnitude and
BDISNP is lower by a factor of 2:72.2. Despite the low bias, observed soil NOy emissions and BDISNP present a similar
spatial pattern as well as temperature dependence. We conclude that soil NOy is a key feature of the NO emissions in the
SJV and that a state-of-the-seienee-biogeochemical process-based model of these emissions is needed to simulate emissions

for modeling air quality in the region.

1 Introduction

Nitrogen oxides (NO,  NO + NO») are important trace gases that affect both the gas and aerosol phases of tropospheric
chemistry. NOy regulates the concentrations of the primary atmospheric oxidant, hydroxyl radicals (OH), and serves as the
catalyst for the formation of ozone (O3). NOy also affects the formation of inorganic nitrate aerosol through the production
of nitric acid (HNOg) and organic nitrates (RONO3) and plays a role in secondary organic aerosol (SOA) production. NOy,
O3 and aerosol are all detrimental to human health, triggering respiratory diseases (Kampa and Castanas, 2008; Hakeem et al.,
2016) and leading to premature death (Lelieveld et al., 2015).

NOx is predominantly emitted from anthropogenic sources, including light and heavy-duty transportation, fuel combustion,
and biomass burning. Among these sectors transportation is the largest in the United States (EPA, 2016). Strict regulations
have been implemented to control NO, emissions. Three-way catalysts have effectively reduced emissions from gasoline-
powered passenger vehicles. The application of emission control systems on coal power plants has reduced NO, emissions
(De Gouw et al., 2014). The California Air Resources Board (CARB) has proposed Heavy-Duty Engine and Vehicle Omnibus
Regulation and Associated Amendments and target for 90% reduction in per-vehicle heavy-duty NO,emission by 2031(CARB,
2016). The regulation of mobile sources leads to an increasing importance of natural NOy sources, such as lightning and soil
emissions. Soil NOy is released as a byproduct of microbial nitrification and denitrification (Andreae and Schimel, 1990).
While the biogeochemistry of soil NOy emission is well established, this biogenic source involves a complex interaction of
soil microbial activity, soil nitrogen (N) content. Besides, agriculture activities, such as the use of fertilizers, lead to a substantial
enhancement of soil NO, emissions (Phoenix et al., 2006).

Currently, the San Joaquin Valley (SJV) in California experiences some of the most severe air pollution in the United States.
The SJV cities, Visalia, Fresno, and Bakersfield are among the top ten most polluted cities for both ozone and particulate matter
(American Lung Association, 2020). In order to implement appropriate emission control efforts, identifying the contribution
of different NO, emissions are particularly important for the SJV as it features a complex mixture of emissions from fuel
combustion and soil emissions associated with agriculture. The contribution of soil NOy emissions remains highly uncertain.
While Guo et al. (2020) attribute approximately 1.1% of anthropogenic NO, emissions in California to soil NOy, Almaraz

etal. (2018) argued that due to growing N fertilizer use, the STV has soil NO, emissions of 24 kg of N ha~! year~!, contributing
20-51% of the NOy budget of the entire state of California. In-eontrast-Guo-et-al-(2020)-attribute-approximately+-1%of
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#-Similarly, Sha et al. (2021) estimated that 40.1% of the total NOx emissions over

California in July 2018 are from soils.
Airborne eddy covariance (EC) flux measurements provide a powerful tool to investigate the emission strength of atmo-

spheric constituents at landscape scales. It has been applied to assess the surface exchanges of greenhouse houses (GHGs)
including CO2 and methane (CH4) (Mauder et al., 2007; Yuan et al., 2015; Sayres et al., 2017; Hannun et al., 2020). In recent
years it has been extended to study emissions of volatile organic compounds and NO, over a megacity (Karl et al., 2009;
Vaughan et al., 2021), vegetation (Karl et al., 2013; Misztal et al., 2014; Wolfe et al., 2015; Kaser et al., 2015; Yu et al., 2017,
Gu et al., 2017), and shale gas production regions (Yuan et al., 2015). Compared to the traditional EC measurements from in-
struments mounted at a fixed location on a tower, wavelet-based airborne EC measurements allow for larger spatial assessment
and are well suited to regions with inhomogeneous and non-stationary source distributions (Siihring et al., 2019).

In this study, we present airborne EC flux measurements obtained during seven flights of a Twin Otter aircraft over the San
Joaquin Valley in California. Companion studies of NO, emissions over Los Angeles (Nussbaumer-—et-al—2022—submitted)
and-VOC(Pfannerstill-et-al—in-prep)-(Nussbaumer et al., 2023) and VOC (Pfannerstill et al., 2023) and GHG fluxes (Schulze

et al. in prep) will be presented separately. We utilize continuous wavelet transformation to calculate the NO, flux (Sect. 3).
In conjunction with footprint calculations and land classification, we explore the spatial heterogeneity of NOy emissions and
identify component fluxes from the highway, urban, and soil land types (Sect. 4). We also utilize the NO emissions derived

from flux measurements to evaluate anthropogenic emission inventories and soil NOy schemes (Sect. 5).

2 Measurements

The airborne EC flux measurements were conducted on a Twin Otter research aircraft operated by the Naval Postgraduate
School (NPS) during the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. The
RECAP-CA field campaign was conducted between June 1st to June 22nd in California, including 7 days of measurements
over the San Joaquin Valley and 9 days of measurements over Los Angeles. The flight path was designed with long straight
legs to ensure good quality of flux measurements (Figure S1) (Karl et al., 2013). The aircraft flew slowly, at the airspeed of
50-60 m/s, and cruised at a low height of 300 m above ground. The aircraft took off at  11:00 local time at Burbank Airport
and landed at  18:00 local time.

The standard instruments aboard the aircraft are described in (Karl et al., 2013) and include total and dew point temperature,
barometric and dynamic pressures, wind direction and wind speed, total airspeed, slip- and attack angles, GPS latitude, GPS

longitude, GPS altitude, pitch, roll, and heading. These measurements are at +6Hz-10 Hz temporal resolution.

VOCs were measured at 10 Hz time resolution by Vocus proton transfer reaction time of flight mass spectrometer (Vocus

PTR-ToF-MS) as described in Pfannerstill et al. (2023). Mixing ratios of NOy were measured at 5 Hz frequency using a
three-channel-custom-built three-channel thermal dissociation-laser induced fluorescence (TD-LIF) instrument. Ambient-air

was—sampled-The multipass LIF cells, fluorescence collection, long-pass wavelength filtering (for >700 nm), and photon
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3 Flux and footprint calculation
3.1 Pre-processing

The observed 10 Hz vertical wind speeds are downscaled to 5 Hz in order to match the time resoN@gmaéasurements.
The full observation data set breaks into segments with continuous wintl@qdmeasurements. The segment window is
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selected if the length is larger than 10 km and the height variation is less than 200 m. We also Iter out measurements when
aircraft roll angles are larger than 8 degrees to avoid perturbation in the vertical wind due to aircraft activity. While most of
the measurements are within theuandartayeiplanetaryboundarylayer (PBL), the airplane arose above the boundary layer

We adjust for the lag time between the meteorology measurements and the TD-LIF measurements by shifting the time of
TD-LIF observation within the time window of 4 seconds until the covariance with the vertical wind speed is maximized
(Figure. S4). As the time lag is assumed to be due to differences in the clocks of the two instruments and the transit time of air
through the TD-LIF instrument, we assume that the lag time for each ight is constant. We use the median lag time from each
ight for all segments collected on the same day.

3.2 Continuous wavelet transformation

The continuous wavelet transformation (CWT) parameterization decomposes the timexggyjastp a range of frequencies

z

W= x(t) ap(t)dt (1)
1

0= Pz o D) @

whereW (a;b) is the wavelet coef cient; ., (t) is the wavelet function, which is based on a “mother” wavelgland is
adjusted with a transition parameteand a scale parametarThe transition parameter determines the location of the “mother”
wavelet and the scale parameter de nes the frequency. We use the Morlet wavelet as the “mother” wavelet.

N I ®)

The Morlet wavelet has been widely applied to represent turbulence in the atmosphere due to a reasonable localization in
the frequency domain and a good ability of edge detection (Schaller et al., 2017).

bh=nN t 4)

ag 21 (5)
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Figure 1 exhibits an example of CWT ux calculation. Figure 1 (a) shows the detreN@gdand vertical wind speed in
a straight segment of 50 km. The detrending is realized by subtracting out the average followed by dividing the standard
deviation of a scalar time series. Both time series are decomposed using CWT algorithm to yield the cross-power spectrum
shown in Figure 1 (b). Due to the nite length in time, the wavelet power spectrum is prone to higher uncertainties closer to the
edge (Mauder et al., 2007). The regions of the wavelet power spectrum where the edge effects are the largest are identi ed as
the Cone of In uence (COI). Data points containing >80% spectral power within the cone of in uence are removed for quality
control. The power spectrum is then integrated over all frequencies to the time seK€x ofix (Figure 1 (c)). Fe-address

therrkueﬂeeeﬂarge—seal&wbamﬂeeweWe processed the integrated uxes as 2 km moving averagego addresghe

3.3 Footprint calculation

The footprint describes the contribution of surface regions to the observed airborne ux. We use the KL04-2D parameterization
to calculate a space-resolved footprint map. This KL04-2D parameterization is developed from a 1-D backward Lagrangian
stochastic particle dispersion model (Kljun et al., 2004). Metzger et al. (2012) implemented a Gaussian cross-wind distribution
function to resolve the dispersion perpendicular to the main wind direction. The input parameters include the height of the mea-

surements, standard deviation of horizontal and vertical wind speed horizontal wind direction, boundary layer height surface
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Figure 1.a) The variance dilOx and vertical wind speed, b) frequency and time-resolved wavelet power spectrum with the cone of in uence

shown as a black dotted line, c) the integrated uxes from the raw data points are shown in black, the uxes after moving averaging and COI

Itering are shown in greenFhedashedgraytine-indicatesthedetectionimit-ef-thissegmentd) the distribution map of ux re-sampled at
500m. Thegrayblack lines show théth-90th percentiles of the footprints and tteck black line denotes the contours of all footprints.

Foreach ux_observationye calculatethefootprint mapat the spatialresolutionof 500mandthenextractthe 90%contour.

Figure 1 (d) depicts the 90% KL04-2D footprint contours of observations resampled to 500 m in one segment. Each footprint
contour is aligned with the horizontal wind direction and is transformed into a geographic coordinate space.

mixed lan
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choiceof thethresholddoesnotin uence theresults.

3.5 \Vertical divergence

Extrapolating the airborne ux to surface ux should account for the vertical divergence. The vertical divergence is a result of
multiple processes, including net in-situ production or loss, storage, and horizontal advection.

To investigate the impact of vertical divergence, the ight route includes three vertically stacked racetracks, during which
the segments are close to each other in space but vary in height. After removing the legs that fail the quality control, only
one racetrack measurement carried out between 14:20 to 15:10 on June 8th presented quali ed ux segments, and the vertica
distribution of uxes is shown in Fig. S4. No consistent increase or decrease of uxes with increasing height is detected during
the racetrack in this study because the vertical divergence is hampered by emission heterogeneity. ShowA3i,Rige
footprint map for each segment at various altitudes covers regions with high heterogeneity. Therefore, we use an alternative
approach to calculate the vertical divergence. Instead of extracting racetrack measurements, we collect a subset of ux mea-
surements during the whole eld campaign based on the footprint coverage. Only uxes with footprints covering croplands
exclusively are included to avoid emission heterogeneityu¥éBlheight(z-fromHRRRte-calculate the ratio of measure-
ment heights relative to the PBL heiglatHz ) -~and98% of selected uxes are located within 70% of the PBL height and they
are divided into 7 bins a£=z with uniform width. We then perform a linear t for the binned median uxes versag aned

usetheregressiomesultto calculate theéinearly extrapelatedsurface-uxes—yertical gorrectionfactor (C = 2ke—). This

11). After vertical divergence correction, the surface uxes are on aveg@g6% higher than the uxes at the measurement

heights.

Fo= (11)

seriesof ‘noise” ux.. Th

is.de ned
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Figure 2. Vertical pro les of measured uxes above croplands during RECAP-CA eld campaign binned by the ratio of measurement height
and PBL heightZ=z). The points represent the median ux within each bin, and the error bars represent the standard deviation. The red
dashed line shows a linear t for median uxes versus relative height.

is.belowthe oD,

The ux calculation using CWT introduces uncertainty from a variety of sources. We describe systematic errors and random
errors following Wolfe et al. (2018).

Systematic errors arise from the under-sampling of high-frequency and low-frequency ranges. The CWT algorithm fails to
resolve a frequency higher than the Nyquist frequency. Due to the high temporal resefutimapeints(5 Hz), we expect a
minimal lossef-atthe high-frequency limit (Figure. S5). The upper limit of systematic error associated with low frequency is
calculated using Eqgn. 12 (Lenschow et al., 1994).
4

. (12)

SE  2:2(2)08
Zi

z andL are the measurement heights and the length of segments, respeztiaetythe boundary layer heights from HRRR.
We calculate the low-frequency error ranges from 1%-5%.

Random errorde-nethedetectiodimit-ofthe C\W
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z, L andz_arethe sameasEqn, 12, 2 is the varianceof verticalwind speedNote that RE noise .assumeghe noisein
eachtime stepis uncorrelatedtherefore we ignorethe moving averagestepin. the uncertaintycalculationandN  denoteghe

Estimating the uncertainty caused by the correction of vertical divergence is tricky. While we conclude that the in uence of
vertical divergence is non-negligible, it is ignored in some previous airborne ux studies (e.g. Vaughan et al., 2016; Hannun

et al., 2020; Vaughan et al., 2021; Drysdale et al., 2022frewe-enhy-considerthe-uncertaintyof 20%asseciatedvith-the

q
F. = SEZ+ REr%oise + REtzurb + REI%lg (15)
20252 F. 24 2 Cz, F. 2

10
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4 Component ux disaggregation

The overview of observed uxes across 7 ights over San Joaquin Valley is illustrated in Fig. 4. It shows a distinct spatial
heterogeneity (Figure 4 (a)). For instance, hig®, ux signals are detected when the aircraft was ying above highway

99 between Bakers eld and Visalia. The transect of cities, such as Fresno, capture a substantial enhan®dentxes.

Figure 4 (b) exhibits theeunteensitydistributionof airborne uxes.8890% of the uxes are positive, demonstrating that our

airborne ux measurements are capable of detediy emissions over the study domain. We attribute the remaib#i§%

of negative uxes to the uncertainties @aleulationincludinganincompletesamplingoft-thefull-speectrumoef-eddiethe_ux

0.37mgNm 2h !ando-65mg0.25mgN m 2 h !, respectively. The interquantile range of uxds27mg0.11mgNm 2
h ! and1-38mg0.49mgN m 2 h 1.0:61.2% of extremely high uxes exceedirfgmg2mgN m 2 h ! represents the long
tail in the ux distribution, which are, like the negative uxes, most likely caused by the incomplete sampling of the spectrum
of eddies driving the uxes.

As discussed in Sect. 3.3, we then calculate the footprint for each ux observation during the RECAP eld campaign. Figure
4 (a) shows the 90% footprint extent in grey. Fig. S8 shows that the 90% extent for the calculated footprints rangexsfrom
te-1170.1610 12 km with a mean extent ¢.6:2.8 km. The KL04-2D footprint algorithm has been applied to airborne ux
analysis over London and in that study, the 90% footprint extents range from 3 km to 12 km from the measurement (Vaughan
et al., 2021). While the largest footprint extent is comparable with those from Vaughan et al. (2021), our calculated footprints
mostly have a smaller extent @§62% of the footprint extents are within 3 km of the aircraft ight track. We attribute the
small footprints to the stagnant weather conditions and weaker horizontal wind advection compared to London. The mean
wind speed is 2.9 m/s for full observation data sets and 2.4 m/s for those data points with footprint extents less than 3 km.
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