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Table s.1. Reported atmospheric levels for the OCPs isomers reviewed

Year | HCB | a-HCH | B-HCH | y-HCH Dp[?T DOL?T Dp[?E DOL?E DprD DODpD Reference
2005 - ND ND ND ND ND ND ND 0.29 ND Baek et al. 2011
2006 - 2.5 0.12 1.03 ND ND 0.4 ND ND ND Baek et al. 2011
2006 - 1.98 ND 0.72 ND ND ND ND ND ND Baek et al. 2011
2006 - 2.36 ND 0.7 ND ND ND ND ND ND Baek et al. 2011
2007 - 1.72 ND ND ND ND ND ND ND ND Baek et al. 2011
1990 NR 4.8 - 5 NA - NA - - - Bidleman et al. 1993
1990 NR 4 - 1.7 1.1 - 0.64 - - - Bidleman et al. 1993
1990 NR 4.7 - 6 0.089 - 0.43 - - - Bidleman et al. 1993
1990 40 3.3 - 1.4 0.38 - 0.17 - - - Bidleman et al. 1993
1990 78 33 - 1.1 <0.2 - 0.25 - - - Bidleman et al. 1993
1990 NR 2.7 - 1.6 NA - na - - - Bidleman et al. 1993
1990 70 3.6 - 5.6 0.35 - 0.17 - - - Bidleman et al. 1993
1990 NR 4.4 - 16.9 0.58 - 0.51 - - - Bidleman et al. 1993
1990 NR 6.7 - 13 0.72 - 0.54 - - - Bidleman et al. 1993
2014 - <0.13 | <0.065| 2.23 ND <0.91 | <0.15 ND ND <0.72 Bigot et al., 2016
2014 - <0.23 |<0.032| 2.8 <0.61 | <0.91 | 0.44 |<0.099| <0.49 | <0.39 Bigot et al., 2016
2014 - <0.33 | <0.059| 3.15 nd <2.73 | 0.15 | <0.15 | <0.38 | <0.41 Bigot et al., 2016
2014 - <0.80 | <037 | 434 | <7.79 | <0.99 | <0.78 | <0.51 | <1.77 | <1.62 Bigot et al., 2016
2014 - 0.93* | <0.76 | 2.48 | <5.30 ND <0.15 | <0.15 | <0.67 | <0.62 Bigot et al., 2016
2014 - <0.31 | <0.030!| 3.36 NR NR <0.15 ND NR <0.60 Bigot et al., 2016
2014 - NR NR NR NR NR NR NR NR NR Bigot et al., 2016
2014 - <0.15 | <0.079 | <0.70 | <0.67 | <1.04 nd <0.15 nd <0.39 Bigot et al., 2016
2014 - <0.44 | <0.23 | 2.88* | <3.44 nd <0.15 | <0.30 | <0.54 | <1.22 Bigot et al., 2016
2014 - <1.11 | <0.69 1.93 ND ND ND ND ND <0.39 Bigot et al., 2016
2014 - <0.30 | <0.10 | 2.35 ND ND ND ND ND ND Bigot et al., 2016
2003 - 0.21 - - - - - - - - Cincinelli et al., 2009
2003 - 0.35 - - - - - - - - Cincinelli et al., 2009
2003 - 0.25 - - - - - - - - Cincinelli et al., 2009
2003 - 0.17 - - - - - - - - Cincinelli et al., 2009
2003 - 0.17 - - - - - - - - Cincinelli et al., 2009
2004 - 0.25 - - - - - - - - Cincinelli et al., 2009
2004 - 0.19 - - - - - - - - Cincinelli et al., 2009
2004 - 0.1 - - - - - - - - Cincinelli et al., 2009
2004 - 0.3 - - - - - - - - Cincinelli et al., 2009
2001 | 19.5 0.2 - 2.26 - - - - - - Dickhut et al. 2005
2001 | 12.2 0.49 - 2.08 - - - - - - Dickhut et al. 2005
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Jo0s | 124 | 014 <L0Q | <LoQ | <LoQ | <LoQ <LoQ | <LoQ Ka”e”;g;geta'v
J00g | 148 | 0.15 <L0Q | <L0Q | <LoQ | 0.03 <L0Q | <LoQ Ka”e”;(‘;geta'-'
Jo0g | 142 | 018 <L0Q | <LOQ | <LOQ | <LOQ <LoQ | <LoQ Ka”e”;g;geta'-'
s00s | 122 | 017 <Loq | <Loq | <Loq | <LoQ <Loq | <LoQ Ka”e”;g;geta'-'
Joos | 159 | 016 <Loq | <Loq | <Loq | <LoQ <Loq | <toq | ‘@lenbom etal.
Joog | 132 | 015 <LoQ | <L0Q | <L0Q | 0.02 <L0Q | <LoQ Ka”enlzaggetal.,
Jo0g | 124 | 016 <L0Q | <LoQ | <LoQ | <LoQ <LoQ | <LoQ Ka”e”;g;geta'v
Jo0g | 149 | 018 <Loq | <LoQ | <LoQ | 0.03 <LoQ | <L0Q Ka”e”;g;geta'v
J008 | 164 | 02 <LoqQ | <LoQ | <LoQ | 0.02 <LoQ | <L0Q Ka”e”;g;geta'v
Joog | 211 | 017 <LoQ | <LoQ | <LoQ | 0.02 <Loq | <Loq Ka”enlzaggetal.,
so0g | 191 | 017 <L0Q | <LOQ | <LOQ | <LOQ <LoQ | <LoQ Ka”e”;g;geta'-'
Jo0g | 201 | 018 <Loq | <Loq | <Loq | <LoQ <Loq | <LoQ Ka”e”;g;geta'-'
008 | 15| 02 <LoQ | <LoQ | 0.03 | 0.02 <Loq | <Loq Ka”enlzaggetal.,
Jo0g | 194 | 018 <L0Q | <LOQ | <LOQ | <LOQ <LoQ | <LoQ Ka”e”;g;geta'-'
J00g | 309 | 035 0.09 | <LOQ | <LOQ | 0.02 <L0Q | <LoQ Ka”e”;(‘;geta'-'
Jo08 | 242 | 019 <LoqQ | <LoQ | <LoQ | 0.02 <LoQ | <L0Q Ka”e”;g;geta'v
Jo0s | <L0Q <L0qQ | <LoQ | <Loq | <LoQ <L0q | <LoQ Ka”ensgigeta'v
Jo0s | <L0Q <Loq | <Loq | <toq | <Loq <toq | <Loq Ka”ensgigeta'v
Jo0s | <L0Q <Loq | <Loq | <Loq | <Loq <L0q | <LoQ Ka”ensgigeta'v
J008 | 171 | 019 <L0Q | <LoQ | <LoQ | <LoQ <LoQ | <LoQ Ka”e”;g;geta'v
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2008 | 170 | 029 <Loq | <Loq | <LoQ | <LoQ <Loq | <LoQ Ka“en;g;g e
2008 16.4 0.3 0.13 | <LOQ | <LOQ | <LOQ <LOQ | <LOQ KaIIenggig el
2009 | 214 | 018 <Loq | <Loq | <LoQ | <L0Q <Loq | <LoQ Ka“en;g;g e
2009 | 186 | 018 <L0Q | <LoQ | <LoQ | <LoQ <L0Q | <L0Q Kanen;g;g e
2009 | 193 | 025 0.1 |<Loq | <LoQ | <LOQ <Loq | <LoQ Ka”en;g;g e
2009 25.2 | 0.22 <LOQ | <LOQ | 0.03 | <LOQ <L0q | <Loq KaIIen;)g;r; etal.,
2009 | 24 | OV <Loq | <Loq | <LoQ | <L0Q <Loq | <LoQ Ka“en;g;g e
2009 | %7 | 9% 0.08 | <LOQ | <LOQ | <LOQ <Loq | <Loq Ka“engg;g e
2009 22.1 | 0.23 0.09 | <LOQ | <LOQ | <LOQ <LOQ | <LOQ KaIIenggig el
5009 22.8 | 0.38 0.45 | 0.08 | <LOQ | 0.22 0.07 | <LoQ KaIIen;)g;r; etal.,
5009 246 | 0.21 0.15 | 0.05 | <LoQ | 0.12 0.05 | <L0Q KaIIen;)g;r; etal,
2009 | 27 | O <Loq | <Loq | <LoQ | <L0Q <Loq | <LoQ Ka”en;g;g e
Jo0g | 255 | 0.21 0.26 | 0.04 | <LOQ | 0.15 0.05 | <LOQ Kallenggir; etal,
2009 | 248 | 0.36 031 | 005 |<L0Q | 0.17 0.06 | <LOQ Kallenggir; etal,
Jo0s | 258 | 022 017 | 003 |<toQ | 01 0.04 | <L0Q Ka"en;)g;r; etal,
2009 | 281 | 01> <Loq | <Loq | <LoQ | <L0Q <Loq | <LoQ Ka“en;g;g e
2009 | 288 | 024 <L0Q | <LoQ | <LoQ | <LoQ <L0Q | <L0Q Kanengg;g el
2009 | 27 | OV <L0Q | <LOQ | <LOQ | 0.1 0.1 | <L0Q Ka”engg;g e
2009 | 278 | OV <L0Q | <LOQ | <LOQ | 0.1 0.1 | <LoQ Ka”engg;g e
2009 | %02 | 92 <Loq | <Loq | <LoQ | <L0Q <Loq | <LoQ Ka“en;g;g e
2009 | 236 | 0.25 0.09 | 0.08 |<L0Q | 0.1 014 | <loq KaIIenSSig etal,
2009 | 202 | 024 <Loq | <Loq | <LoQ | <L0Q <Loq | <LoQ Ka“en;g;g e
2009 | 278 | 018 <Loq | <toq | <toQ | <LoQ <L0Q | <LoQ Kanengg;g e
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2009 29.8 | 0.23 <LloQ | 0.05 | <toQ | 0.1 01 | <L0Q KalIenSg;r;etal.,
2009 | 2M4 | 02 <L0Q | <LOQ | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2009 | %8 | O <L0Q | <L0Q | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2000 | 1 | 018 <L0Q | <LOQ | <LOQ | <LOQ <L0Q_ | <LOQ Ka“ensg;gﬂalq
2000 | 08| 019 <L0Q | <LOQ | <LOQ | <LOQ <L0Q | <LOQ Ka“ensg;gﬂalq
2009 | 102 | 018 <L0Q | <LOQ | <LOQ | <LOQ <L0Q, | <LOQ Ka“ensg;gﬂalq
2009 | %3 | 01 <L0Q | <L0Q | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2009 | 18 | 01 <L0Q | <L0Q | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2009 | 4| 01 <L0Q | <L0Q | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2000 | 123 | OV <L0Q | <LOQ | <LOQ | <LOQ <L0Q | <LOQ Ka“ensg;gﬂalq
2000 | 123 | 016 <L0Q | <LOQ | <LOQ | <LOQ <L0Q, | <LOQ Ka“ensg;gﬂalq
2009 | 142 | 014 <L0Q | <LOQ | <LOQ | <LOQ <L0Q_ | <LOQ Ka“ensg;gﬂalq
2009 11.6 | 0.17 <LoQ | 0.04 | <LoqQ | <LOQ 0.06 | <LOQ KalIenSg;r;etal.,
S009 | 12:94 | 0.17 <l0Q | 0.02 | 0.04 | <LOQ <10Q | <Loq Kallen;)(c));r;etal,,
2009 | <109 | 015 <L0Q | <L0Q | <LOQ | <LOQ <Loq | <LoqQ Ka“ensg;gﬂalq
2009 | 118 ] 010 <L0Q | <LOQ | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2009 159 | 0.15 <LoQ | 0.07 | <LoQ | <LoQ 0.09 | <LOQ KalIenSg;r;etal.,
2000 | 27| OV <L0Q | <LOQ | <LOQ | <LOQ <L0Q, | <LOQ Ka“ensg;gﬂalq
2000 | 0| 0% <L0Q | <LOQ | <LOQ | <LOQ <L0Q_ | <LOQ Ka“ensg;gﬂalq
2009 18.25 | 0.16 <LoQ | <Loq | <LoqQ | <Loq <L0Q | <LoQ KalIenSg;r;etal.,
2009 | %t | O1° <LOQ | <LOQ | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2009 | *+> | 92 <L0Q | <L0Q | <LOQ | <LOQ <LoQ | <LoQ Ka“ensg;gﬂalq
2000 | 198 | 018 <L0Q | <LOQ | <LOQ | <LOQ <L0Q | <LOQ Ka“ensg;gﬂalq
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Jo00 | 208 | 018 <L0Q | <LoQ | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo09 | 255 | 017 <L0Q | <LoQ | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo00 | 1891 | 016 <LoQ | <Loq | <LoQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo09 | 2531 | 017 <L0Q | <LoQ | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo0g | 198 | 018 <LoQ | <LoQ | <LOQ | <LOQ <LoQ | <Loq Ka”e”;’g;g etal,
Jo0g | 234 | 02 <L0Q | <L0Q | <LOQ | <LoQ <L0Q | <LoQ Ka”e”;’g;g etal,
Jo09 | 202 | 025 <L0Q | <LoQ | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo09 | 235 | 025 <L0Q | <L0Q | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo10 | 281 | 017 <L0Q | <L0Q | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo10 | 2553 | 0.16 <L0Q | <LoQ | <LOQ | <LOQ <Loq | <Loq Ka”e”;’g;g etal,
Jo10 | 2469 | 017 <LoQ | <LoQ | <LOQ | <LOQ <Loq | <Loq Ka”e”;g;g etal,
Jo1o | 263 | 013 <LoQ | <LoQ | <LoQ | <LoQ <Loq | <LoQ Kallen;(?;g el
5010 | 2763 | 0.17 <LoQ | <LoQ | <LoQ | <LoQ <LoQ | <LoQ Ka”e”;’g;g etal,
5010 | 27:35 | 0.16 <LoQ | <LoQ | <LoQ | <LoQ <Loq | <LoQ Ka”e”;’g;g etal,
2010 29.98 | 0.28 <LoQ | <LoQ | <Loq | <LoQ <Loq | <Loq Kallen;)((;;r; etal,
5010 | 2771 | 0.15 <LoQ | <LoQ | <LoQ | <LoQ <LoQ | <LoQ Ka”e”;’g;g etal,
010 | 27 | 013 <LoQ | <LoQ, | <LOQ | <LOQ <L0Q | <L0Q Ka”en;gg etal,
Jo10 | 18:02 | 0.17 0.15 | <L0Q | <LOQ | <LOQ <L0Q | <L0Q Ka”e”;’g;g etal,
Jo10 | <L0Q | 017 <LoQ | <LoqQ | <LoQ | <LoQ <toq | <Loq Ka”e”;’g;g etal,
10 | 23 | 021 <Loq | <Loq | <Loq | <Loq <L0Q | <L0Q Ka”e”;’g;g etal,
Jo10 | 2502 | 014 <L0Q | <L0Q | <LOQ | <LoQ <L0Q | <LoQ Ka”e”;’g;g etal,
Jo10 | 298 | 026 0.26 | <LOQ | <LOQ | <LOQ <L0Q | <LoQ Ka”e”;’g;g etal.,
Jo10 | 267 | 018 <LoQ | <LoQ | 0.03 | <L0Q <10q | <1oq Kallensgg etal,
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2010 <LoQ <LOQ | <LOQ | <LOQ | <LOQ <LOQ | <LOQ Kallen;(;g el
2010 | 92 | O <LoQ | <loQ | <LOQ | <LOQ <LoqQ | <LoQ Kanen;gg e
2010 | %3 | OV <LoQ | <Loq | <LoQ | <L0Q <LoQ | <LoQ Kanen;gg e
Jo1g | 223 | 0.36 0.14 | <LoqQ | <LoqQ | <LoQ <0q | <L0q Kallenggg etal,,
2010 | %0 | 0% <L0Q | <LOQ | <LOQ | <LOQ <L0Q | <LOQ Kanen;gg el
Jo10 | 315 | 018 <LoQ | <LoQ | <LoQ | <LOQ <L0Q | <L0Q Kanen;gg el
2010 | 2% | OV <LoQ | <LoQ | <L0Q | <LO0Q <LoQ | <LoQ Kanen;gg e
2010 23.22 | 0.24 <L0Q | <LoqQ | <LoQ | <LoQ <L0Q | <LoQ KaIIen;)g;r; et al,,
2010 23.84 0.2 <L0Q | <LoQ | <LoQ | <LoQ <Loq | <Loq KaIIenggir; et al,,
2010 25.72 | 0.17 <L0Q | <LoqQ | <LoQ | <LoQ <Loq | <Loq KaIIenSg;r; etal,
2010 | 10| 018 <L0Q | <LOQ | <LOQ | <LOQ <L0Q | <LOQ Kanen;gg el
2010 | 20 | &7 <L0Q | <LOQ | <LOQ | <LOQ <L0Q | <LOQ Kanen;gg el
2010 | 102 | 014 <L0Q | <LOQ | <LOQ | <LOQ <LoQ | <LOQ Kanen;gg el
2010 | 2> | %1° <LoQ | <Loq | <LoQ | <L0Q <LoQ | <LoQ Kanen;gg e
2010 | 2° | OB <LoQ | <Loq | <LoQ | <L0Q <LoQ | <LoQ Kanen;gg e
2010 | 269 | 018 <L0Q | <LoQ | <Loq | <LoQ 0.02 | <L0Q Kanenggg e
Jo1p | 118 | 0.18 <L0Q | <L0Q | 0.04 | <LOQ <0q | <Loa Kallenggg etal,
= 49 i ] ] i i Larson et al., 1992
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= 23 i ] ] ) ) Larson et al., 1992
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1988

21
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19
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17
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Larson et al., 1992

1989

47
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50
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96
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13
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33
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18
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1989

38
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1989
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1989

Larson et al., 1992

1989

27
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1989

16
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1989

58
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1990 72 - - - Larson et al., 1992
Montone et al.,
1995 33 4.7 17.6 19.4 53.8 29.4 2005
Montone et al.,
1995 <0.6 14.1 18.4 9.7 8.9 6.8 2005
Montone et al.,
1995 9.2 14.2 10.1 3.6 7.1 6.1 2005
Montone et al.,
1995 8 14.2 13.8 5.6 9.8 4.4 2005
Montone et al.,
1995 7.3 6 13.4 2.4 4.7 <2.7 2005
Montone et al.,
1995 8.8 5.9 12.4 <2.7 5.3 <2.7 2005
Montone et al.,
1995 10.9 10.7 10.3 <2.7 2 <2.7 2005
Montone et al.,
1995 4 31 5.6 <2.7 2.8 <2.7 2005
Montone et al.,
1995 <0.6 2.4 <2.7 <2.7 6.1 <2.7 2005
Montone et al.,
1995 11.5 7.3 5.1 <2.7 2.2 <2.7 2005
Montone et al.,
1995 17.4 5.3 6.3 <2.7 <2.0 <2.7 2005
Montone et al.,
1995 24.6 3.3 3 <2.7 5.2 <2.7 2005
Montone et al.,
1995 25.3 35 4.6 <2.7 <2.0 <2.7 2005
Montone et al.,
1995 21.9 4.5 <2.7 <2.7 2.2 <2.7 2005
1997 - 0.93 - - - - Jantunen et al., 2004
1997 - 0.92 - - - - Jantunen et al., 2004
1997 - 0.49 - - - - Jantunen et al., 2004
1997 - 0.81 - - - - Jantunen et al., 2004
1997 - 0.87 - - - - Jantunen et al., 2004
1997 - 0.94 - - - - Jantunen et al., 2004
1997 - 1.4 - - - - Jantunen et al., 2004
1997 - 1.3 - - - - Jantunen et al., 2004
1997 - - - - - Jantunen et al., 2004
1997 - 1.3 - - - - Jantunen et al., 2004
1997 - 1.1 - - - - Jantunen et al., 2004
1997 - 1.5 - - - - Jantunen et al., 2004
2011 23.4 BDL 0.04 BDL BDL Pozo et al., 2017
2011 18.4 BDL 0.07 0.1 BDL Pozo et al., 2017
2011 30.6 0.05 BDL BDL BDL BDL Pozo et al., 2017
2011 17.1 - BDL BDL BDL BDL Pozo et al., 2017
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2011 0.8 ) - BDL BDL - BDL - BDL - Pozo et al., 2017
2011 47 _ - BDL 0.03 - BDL - BDL - Pozo et al., 2017
2013 | 0.17 1.4 2 1.6 ND ND 0.15 ND ND ND Wu et al., 2020
2013 | 0.45 4 ND 6.1 ND ND ND | 0.028 ND ND Wu et al., 2020
2013 6.4 ND? ND 1.6 ND ND 0.62 ND ND ND Wu et al., 2020
2013 3.1 ND ND ND ND ND 0.37 | 0.16 ND ND Wu et al., 2020
2013 | 0.79 4.7 ND 6.1 0.89 ND ND | 0.062 | 0.069 ND Wu et al., 2020
2013 4.4 ND ND ND ND ND 0.37 | 0.17 ND ND Wu et al., 2020
2013 | 0.13 ND ND ND ND ND ND | 0.041 ND ND Wu et al., 2020
2014 | 0.21 ND ND ND ND ND ND 0.28 ND ND Wu et al., 2020
2014 4.1 ND ND ND ND ND ND 0.41 ND 0.59 Wu et al., 2020
2014 3.6 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 7.1 ND ND ND ND ND ND 0.27 ND ND Wu et al., 2020
2014 1.2 ND ND ND ND ND 0.77 ND ND ND Wu et al., 2020
2014 2.9 ND ND ND ND ND 1.2 ND ND ND Wu et al., 2020
2014 2.4 ND ND ND ND ND 0.88 ND ND ND Wu et al., 2020
2014 1.4 ND ND ND ND 3.2 1.7 0.63 ND ND Wu et al., 2020
2014 1.2 ND ND ND ND ND 1.5 ND ND ND Wu et al., 2020
2014 | 0.42 ND ND ND ND ND ND | 0.036 ND ND Wu et al., 2020
2014 2 ND ND ND ND ND 0.27 ND ND ND Wu et al., 2020
2014 | 0.46 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 | 0.081 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 4.4 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 6.8 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 10 ND ND ND ND ND 13 041 | 0.21 ND Wu et al., 2020
2014 4 ND ND ND ND ND 0.28 0.1 ND ND Wu et al., 2020
2014 | 0.22 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 | 0.12 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 | 0.13 ND ND ND ND ND ND ND ND ND Wu et al., 2020
2014 4.8 ND ND ND ND ND ND ND ND ND Wu et al., 2020




Table S.2. Reported atmospheric levels for the 7 PCB congenerics reviewed

Year PCB 28 PCB52 | PCB101 | PCB 118 | PCB 138 | PCB 153 | PCB 180 Reference

2009 0.576 1.775 0.082 0.281 1.359 0.187 Cabrerizo et al., 2013
2009 0.29 1.325 0.048 0.227 1.38 0.196 Cabrerizo et al., 2013
2009 0.216 0.863 0.02 0.126 1.119 0.153 Cabrerizo et al., 2013
2009 0.238 0.672 0.048 0.174 1.175 0.185 Cabrerizo et al., 2013
2009 0.633 1.977 0.124 0.609 1.27 0.215 Cabrerizo et al., 2013
2009 0.315 0.494 0.108 0.454 1.139 0.2 Cabrerizo et al., 2013
2009 0.781 2.133 0.405 0.881 1.211 0.188 Cabrerizo et al., 2013
2009 0.281 1.29 0.064 0.34 0.819 0.13 Cabrerizo et al., 2013
2009 0.6 1.296 0.339 0.581 1.107 0.221 Cabrerizo et al., 2013
2009 0.133 0.88 0.022 0.144 0.854 0.144 Cabrerizo et al., 2013
2009 0.186 0.505 0.034 0.212 0.729 0.143 Cabrerizo et al., 2013
2009 0.224 0.534 0.02 0.159 0.718 0.108 Cabrerizo et al., 2013
2009 0.259 0.691 0.058 0.359 0.783 0.142 Cabrerizo et al., 2013
2009 0.144 0.035 0.231 0.565 0.108 Cabrerizo et al., 2013
2009 0.247 3.86 0.036 0.262 0.628 0.129 Cabrerizo et al., 2013
2005 1.41 4.84 0.68 0.88 1.02 0.51 Galban-Malagon et al., 2013
2005 1.07 5.01 1.97 191 2.38 0.35 Galban-Malagon et al., 2013
2005 2.62 3.73 0.51 2.59 2.8 0.18 Galban-Malagon et al., 2013
2005 2.02 1.53 0.62 0.94 1.06 0.13 Galban-Malagon et al., 2013
2005 0.88 0.57 0.59 0.71 0.52 Galban-Malagon et al., 2013
2005 0.53 2.38 0.25 0.42 0.49 0.2 Galban-Malagon et al., 2013
2005 2.59 51 1.39 1.92 2.28 0.3 Galban-Malagon et al., 2013
2005 0.6 5.35 0.38 0.65 0.69 0.34 Galban-Malagon et al., 2013
2005 1.56 6.1 0.51 1.01 0.93 0.17 Galban-Malagon et al., 2013
2005 2.71 0.56 0.79 1.1 1.08 NR Galban-Malagon et al., 2013
2005 1.82 0.09 0.58 0.56 0.56 NR Galban-Malagon et al., 2013
2008 3.89 0.09 2.27 4.39 2.87 1.9 Galban-Malagén et al., 2013
2008 5.11 1.77 4.07 2.75 2.68 0.03 Galban-Malagon et al., 2013
2008 0.39 4.56 0.59 0.17 0.22 0.12 Galban-Malagén et al., 2013
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2008 0.58 1.29 0.26 0.37 0.48 0.75 Galban-Malagén et al., 2013
2008 12.96 0.78 1.8 1.94 1.75 1.41 Galban-Malagén et al., 2013
2008 2.93 2.92 0.89 2.17 11.21 0.39 Galban-Malagén et al., 2013
2009 1.05 0.29 0.43 1.22 1.55 0.13 Galban-Malagén et al., 2013
2009 1.97 0.1 0.14 0.53 0.71 0.89 Galban-Malagén et al., 2013
2009 5.1 1.15 1.19 2.01 2.57 0.26 Galban-Malagén et al., 2013
2009 2 0.36 0.33 0.74 0.91 0.18 Galban-Malagén et al., 2013
2009 1.18 0.23 0.38 0.21 0.55 0.23 Galban-Malagén et al., 2013
2009 1.5 0.43 1 0.72 0.71 0.27 Galban-Malagén et al., 2013
2009 3.14 1.3 0.33 0.7 0.75 0.32 Galban-Malagén et al., 2013
2009 1.58 0.6 0.15 0.41 0.87 0.17 Galban-Malagén et al., 2013
2009 0.89 NR 0.17 0.23 0.45 0.04 Galban-Malagén et al., 2013
2009 0.16 NR 0.02 0.05 0.12 0.01 Galban-Malagén et al., 2013
2009 0.21 NR 0.02 0.01 0.07 0.02 Galban-Malagén et al., 2013
2009 0.2 NR 0.02 0.02 0.08 NR Galban-Malagén et al., 2013
2003-2004 - - - 2 - - Gambaro et al., 2005
2010-2011 4.7 1.1 0.3 0.14 0.3 0.5 0.1 Hao et al. 2019
2011-2012 23 0.5 0.3 0.17 0.2 0.3 0.07 Hao et al. 2019
2012-2013 4.4 0.69 0.3 0.2 0.16 0.21 0.05 Hao et al. 2019
2013-2014 33 0.4 0.3 0.13 0.12 0.14 0.03 Hao et al. 2019
2014-2015 1.3 0.3 0.3 0.14 0.2 0.2 0.05 Hao et al. 2019
2015-2017 0.7 0.15 0.07 0.03 0.04 0.06 0.02 Hao et al. 2019
2017-2018 0.5 0.11 0.06 0.02 0.03 0.05 0.01 Hao et al. 2019
1994 3.9 1.1 0.53* 0.53 0.51* 0.45* 0.17* Kallenborn et al., 1998
1994 0.84* 0.31* 0.26" 0.32* 0.24* 0.30" 0.12* Kallenborn et al., 1998
1994 1.0 0.44* 0.27* 0.39* 0.34* 0.48 0.18* Kallenborn et al., 1998
1994 1.8~ 0.98* 0.59* 1.1 1.4 2.7 1.11 Kallenborn et al., 1998
1994 2.8 0.93* 0.29* 0.23* 0.22* <0.2 0.09* Kallenborn et al., 1998
1994 <0.8 0.12* 0.06* 0.07* 0.06™ <0.2 0.03* Kallenborn et al., 1998
1995 1.2* 0.46* 0.13* 0.16* <0.1 <0.2 0.09* Kallenborn et al., 1998
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1995 16 9.5 3.9 0.6 0.57 0.94 0.13* Kallenborn et al., 1998
1995 25 13 4.5 0.95 0.83 1.2 0.2 Kallenborn et al., 1998
1995 15 12 5 0.79 0.63 1.1 0.06* Kallenborn et al., 1998
1995 22 12 4.5 0.85 0.77 1.3 0.22 Kallenborn et al., 1998
1995 16 8.8 34 0.68 0.71 0.98 0.18* Kallenborn et al., 1998
1995 21 13 4.8 0.79 0.79 14 0.22 Kallenborn et al., 1998
1995 24 15 5.7 0.95 1.1 1.6 0.29 Kallenborn et al., 1998
1995 9.4 6 23 0.33* 0.27 0.53 0.09* Kallenborn et al., 1998
1995 <0.8 <0.4 3.6 0.61 1.1 1.1 0.24 Kallenborn et al., 1998
1995 4.7 1.1 0.26 0.12* <0.1 <0.2 0.02* Kallenborn et al., 1998
1995 16 9.5 3.9 0.6 0.57 0.94 0.13* Kallenborn et al., 1998
1995 13 7.5 2.9 0.49 0.45* 0.73 0.11* Kallenborn et al., 1998
1995 14 8.4 34 0.54 0.52* 0.84 34 Kallenborn et al., 1998
1995 7.4 4.6 1.7 0.27* 0.28* 0.43* 0.06* Kallenborn et al., 1998
2008 0.25 <LOQ - - Kallenborn et al., 2013
2008 0.16 <LOQ - - Kallenborn et al., 2013
2009 0.13 0.1 - - Kallenborn et al., 2013
2009 0.21 0.07 - - Kallenborn et al., 2013
2010 0.18 0.07 - - Kallenborn et al., 2013
2010 0.45 0.24 - - Kallenborn et al., 2013
2010 0.15 0.09 - - Kallenborn et al., 2013
1988 4 2 4 Larson et al., 1999

1988 ND 1 1 Larson et al., 1999

1988 1 1 1 Larson et al., 1999

1988 14 14 10 Larson et al., 1999

1988 ND 1 0.5 Larson et al., 1999

1988 1 0.3 0.3 Larson et al., 1999

1988 4 1 1 Larson et al., 1999

1988 2 1 1 Larson et al., 1999

1988 ND 1 1 Larson et al., 1999




Continue

1988 1 0.4 0.3 Larson et al., 1999
1988 ND 13 10 Larson et al., 1999
1988 444 1810 1280 Larson et al., 1999
1988 2 9 1 Larson et al., 1999
1989 2 2 1 Larson et al., 1999
1989 3 1 1 Larson et al., 1999
1989 ND ND ND Larson et al., 1999
1989 7 5 15 Larson et al., 1999
1989 1 1 1 Larson et al., 1999
1989 7 2 2 Larson et al., 1999
1989 ND 1 1 Larson et al., 1999
1989 4 1 1 Larson et al., 1999
1989 1 ND 0 Larson et al., 1999
1989 ND ND ND Larson et al., 1999
1989 2 1 0 Larson et al., 1999
1989 ND 1 1 Larson et al., 1999
1989 3 2 2 Larson et al., 1999
1989 0.5 0.2 0.3 Larson et al., 1999
1989 1 0.3 0.4 Larson et al., 1999
1990 - 1 1 1 Larson et al., 1999
2009-2010 3.46 0.67 0.1 0.197 0.18 0.26 0.039 Li et al. 2012
2009-2010 5.53 0.62 0.05 0.07 0.05 0.07 0.009 Li et al. 2012
2009-2010 1.7 0.24 0.16 0.042 0.03 0.04 0.006 Li et al. 2012
2009-2010 5.1 0.78 0.05 0.148 0.11 0.17 0.029 Li et al. 2012
2009-2010 1.17 0.2 0.19 0.064 0.06 0.1 0.019 Li et al. 2012
2009-2010 0.57 0.068 0.086 0.034 0.032 0.028 0.01 Li et al. 2012b
2009-2010 1.08 0.056 0.14 0.026 0.048 0.04 0.008 Li et al. 2012b
2009-2010 1.1 0.13 0.32 0.024 0.03 0.032 0.01 Li et al. 2012b
2009-2010 0.28 0.21 0.084 0.036 0.036 0.04 0.012 Li et al. 2012b
1993 - 8 6.8 5.9 3.8 7.3 <0.64 | Montone et al., 2001




Continue

1993 - 4.7 <4.00 24 <2.30 3.7 <0.64 Montone et al., 2001
1993 - 7.8 <4.00 3.6 <2.30 4.7 <0.64 Montone et al., 2001
1994 - <4.57 <4.00 6.1 34 4.8 <0.64 Montone et al., 2001
1994 - <4.57 <4.00 <2.40 <2.30 <3.56 <0.64 Montone et al., 2001
1994 - <4.57 <4.00 <2.40 <2.30 <3.56 <0.64 Montone et al., 2001
1994 - <4.57 <4.00 <2.40 <2.30 <3.56 <0.64 Montone et al., 2001
1994 - <4.57 <4.00 <2.40 <2.30 <3.56 <0.64 Montone et al., 2001
1995 - 7.3 5.2 4.9 2.7 3.8 <0.6 Montone et al., 2003
1995 - 8.7 7.2 17 10.4 18.5 <0.6 Montone et al., 2003
1995 - 2.3 4 4.4 2.5 <3.6 <0.6 Montone et al., 2003
1996 - 19.1 12 8.5 5.2 4.1 <0.6 Montone et al., 2003
1996 - 33.2 10.7 8.7 4.3 6.4 <0.6 Montone et al., 2003
1996 - 6.6 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - -4.6 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - -4.6 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - 10.5 5.4 4.5 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - 9 9.5 11.5 4.6 8.2 <0.6 Montone et al., 2003
1996 - 17 8.2 6.7 -2.3 4.5 <0.6 Montone et al., 2003
1996 - -4.6 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - -4.6 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - -4.6 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - 6.8 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - 5.7 <4 <24 -2.3 <3.6 <0.6 Montone et al., 2003
1996 - 8.6 150.8 207.8 <3.6 <0.6 Montone et al., 2003
1995 14.9 6.9 4.6 <2.4 3 <3.6 <0.6 Montone et al., 2005
1995 14.7 9.6 9.3 6 4 7.1 <0.6 Montone et al., 2005
1995 23.8 11.4 7 2.8 2.3 4.1 <0.6 Montone et al., 2005
1995 9.3 9.3 6 2.9 2.6 3.9 <0.6 Montone et al., 2005
2011 BDL 0.1 0.03 0.07 0.11 0.04 0.06 Pozo et al. 2017

2011 0.03 0.08 0.03 BDL 0.07 0.04 BDL Pozo et al. 2017




Continue

2011 BDL 0.25 0.1 BDL 0.06 BDL BDL Pozo et al. 2017
2011 BDL 0.09 0.09 0.22 0.27 0.19 0.27 Pozo et al. 2017
2011 BDL BDL BDL BDL BDL BDL BDL Pozo et al. 2017
2011 BDL BDL 0.04 0.05 BDL 0.02 BDL Pozo et al. 2017
2011 9.8 0.7 0.17 0.08 0.07 0.14 0.02 Wang et al., 2017
2012 2.76 0.33 0.12 0.03 0.03 0.07 0.01 Wang et al., 2017
2013 2.2 0.42 0.35 0.041 0.04 0.09 0.009 Wang et al., 2017
2014 1.42 0.18 0.13 0.025 0.03 0.05 0.007 Wang et al., 2017
2013 ND ND ND ND ND ND ND Wu et al. 2020
2013 ND ND ND ND ND ND ND Wu et al. 2020
2013 ND ND ND ND ND ND ND Wu et al. 2020
2013 ND ND ND ND ND ND ND Wu et al. 2020
2013 ND ND ND ND ND ND ND Wu et al. 2020
2013 ND ND 0.088 ND ND ND ND Wu et al. 2020
2013 ND ND ND ND ND ND ND Wu et al. 2020
2014 1.4 2.4 ND ND ND ND ND Wu et al. 2020
2014 1.6 1 ND ND ND ND ND Wu et al. 2020
2014 ND 0.15 ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND 0.14 ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wu et al. 2020




Continue

2014 ND ND 0.12 ND ND 0.094 ND Wu et al. 2020
2014 ND ND ND ND ND ND ND Wou et al. 2020
2014 ND ND 0.12 0.34 0.2 0.3 0.27 Wou et al. 2020
2014 ND ND ND 0.14 ND 0.14 0.083 Wu et al. 2020
2014 ND ND ND ND ND 0.1 ND Wou et al. 2020
2014 ND ND ND ND ND 0.097 ND Wu et al. 2020




Table S.3. Physical-chemical properties of POPs reported in the Antarctic atmosphere. Data shown are the
molecular weight (MW), Henry's law constant (H), octanol-water partition coefficient (log Kow), octanol-air
partition coefficient (log Koa) and estimated atmospheric decrementing times (Tp) and half-lives reported by

other studies.

MW H To Half-life
Compound (g mol) (Pa r;;r:cc;rl at log Kow log Koa (Vears) (Vears)
HCB 285 532 5.72 7.28 12.3 0.4 -4.3k
a-hch 291 0.74° 3.8¢ 7.5° 14.3 0.06k
y-hch 291 0.31° 3.6¢ 3.8° 10.1 0.006™ - 0.019
2,4 DDE 319 4.2 5.438 9.7 17.6 0.002"
4,4-DDE 319 4,2° 6.9649 9.7° 13.47 0.002"
4,4 DDD 321 0.5@ 6.224 10a 12.76 0.002-0.02™
2,4 DDT 354 1.1 8.3h 9.6/ 14.4 0.002-0.02™
4,4 DDT 354 1.1° 6.39' 9.8° 17.2 0.002-0.02™
PCB 28 257 37¢ 5.7f 7.9¢ 3.9 0.038 - 0.08%; 0.008'
PCB 52 292 31¢ 5.9f 8.2¢ 3.7 0.06-0.16%; 0.17'
PCB 101 326 43¢ 6.3f 8.2¢ 4.7 0.16-0.32%; 0.34'
PCB 118 326 37¢ 6.7f 9.4¢ 3.6 0.16-0.32%; 0.34'
PCB 138 361 45¢ 7° 9.7¢ 6.5 0.07-0.2%; 0.68'
PCB 153 361 50°¢ 6.9f 10.4c¢ 7.6 0.07-0.2% 0.68'
PCB 180 395 37¢ 7.2f 10.2¢ 4.6 1.36%

References: ?Shen and Wania (2005); °Xiao et al. (2004); “Bamford et al. (2002); “Hansch et al. (1995);

eSangster (1993); fLi et al. (2003); 8Finzio (1993); "Chen et al. (1993); Xiao et al. (2004); 'Shoeib & Harner (2002);

kAtkinson (1987); 'Sinkonen & Parsivita (2000); "Howard (1991); "Kelly et al. (1994)



Table S.4 Results of U-Mann Whitney test performed to evaluate differences in POPs levels between East and
West Antarctica.

Compound p-value
a-HCH 2.20E-14
y-HCH 0.4

HCB 2.80E-06
PCB-28 0.00003
PCB-52 0.00007

PCB-101 0.5
PCB-118 0.06
PCB-138 0.01
PCB-153 0.8

PCB-180 0.8
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