Reviewer 2

	Comments	Reply
2.1.	This paper by Sakata et al. presented a detailed analysis of annual observations of	We sincerely thank the reviewer for their time and effort on this review. We have carefully
	Fesol% in size-fractionated (seven fractions) aerosol particles at Higashi-Hiroshima,	revised the manuscript with full consideration of the comments and suggestions provided.
	Japan. The [d-Fe]/[d-Al] ratios were proposed to identify the source of d-Fe in aerosol	Please find the point-to-point replies listed below.
	particles and to understand the seasonal variability of the fraction of mineral dust and	"Revised text is shown in blue (in quotes, blue font) in this replies."
	anthropogenic Fe in d-Fe in aerosols. They compared the differences of total Fe and	
	dissolved Fe and [d-Fe]/[d-Al] between in coarse aerosol particles and fine aerosol	
	particles. What's the most important, they provided a simple but useful marker ([d-	
	Fe]/[d-A1] ratio) to estimate the emission sources of d-Fe in marine aerosol particles.	
	Overall, this paper is well written and logical, and the scientific questions discussed	
	clearly, which meets the scope of ACP. I recommend this manuscript to be published	
	after the following comments are addressed.	
2.2.	Line 15-17: The first two sentences in the Abstract seem to be repetitive and appear to	Thank you for pointing this out. We have removed the first sentence in the previous
	be a mess. Please simplify the expression to make it clearer.	version.
2.3.	Line 103-106: "Our previous study identified that fine aerosol particles collected at	We are sorry for the confusing descriptions. We intended to mention that Fe in size-
	the sampling site contained anthropogenic Fe with a negative $\delta 56$ Fe. Therefore, the	fractionated aerosol particles at the sampling site is likely influenced by various
	sampling site is useful for evaluating the availability of the [d-Fe]/[d-Al] ratio as an	emission sources, including mineral dust and anthropogenic emissions. We have
	indicator of the fractions of mineral dust and anthropogenic Fe in d-Fe in aerosol	improved the sentence as described below.
	particles." Here the author stated that sampling location is of significance, however,	Air masses at the sampling site in summer were mainly derived from the domestic
	in my opinion, there is no causal relationship between the preceding and following of	region of Japan, whereas air masses passing over East Asia arrived at the site in
	this sentence. Why are sampling locations useful? Is it the unique research data	winter and spring (Fig. S1). Our sample set included samples affected by Asian
	provided?	dust and serious haze events associated with anthropogenic emissions, which
		allowed us to obtain aerosol samples with considerable differences depending on
		the size dependence and seasonal variation expected for Fe chemistry and d-Fe
		sources.
2.4.	Line 160: In the section of "Estimation of aerosol pH", as far as I know, the input data	Since the observation site is under a humid environment throughout the year, the
	of E-AIM model requires high relative humidity, generally over 60%, so the authors	average RH for each sampling period exceeded 60% for most of the samples. The

	need to specify whether the data used meet the input requirements of the model.	following texts about the average RH during the sampling have been added to the
		manuscript.
		In addition, E-AIM model IV cannot calculate aerosol pH when the RH is below
		60 %. The average RH during each sampling period was higher than 60 %,
		except for those of aerosol samples collected in April and May 2013. The
		aerosol pH collected in April and May was calculated under the assumption of
		$60\%\mathrm{RH}$ because the average RHs of the samples for these months were 59.4 $\%$
		and 59.5 %, respectively.
2.5.	Normally, an enrichment factor greater than 10.0 for an element is generally	As you pointed out, significant enrichment of target elements from anthropogenic
	considered to be an enrichment, possibly from anthropogenic source. However, it can	emissions is usually recognized when EF is greater than 10. However, in this criterion,
	be seen from Figure 3c that the EFs of Fe is less than 10.0 for all particle size, making	the contribution of anthropogenic Fe may be underestimated due to the smaller
	it difficult to say that Fe was enriched. How do the authors interpret this?	emission amount of anthropogenic Fe than mineral dust. Here, we evaluated the
		variability of the Fe/Al ratio in Asian dust based on previous studies. As a result, we
		found a small variation in the Fe/Al ratio in Asian dust (Fe/Al: 0.570 ± 0.163 (= 1σ),
		range: 0.294-1.05). Therefore, we decided that enrichment of anthropogenic Fe is
		recognized when the EF of Fe is higher than 2 with consideration of small variability
		of the Fe/Al ratio in crustal materials. We have added the following sentences to the
		manuscript.
		Iron and Al concentrations in the average continental crust (Fe/Al: 0.684) were
		acquired by referring to Taylor (1964). Given the variability of the Fe/Al ratio
		in crustal materials, significant enrichment of the Fe derived from
		anthropogenic emissions is usually recognized at EF values higher than 10.0.
		The EF equation suggests that about 90 % of Fe is derived from anthropogenic
		sources when the EF is 10.0. Given that the emission amount of crustal Fe is an
		order of magnitude higher than that of anthropogenic Fe, the EF for Fe in aerosol
		particles is usually below 10.0, except for aerosol samples collected near steel
		plants and in urban areas. Therefore, classification of Fe as anthropogenic Fe by
		the criterion $EF > 10.0$ substantially simplifies the origin of Fe in aerosol
		particles. If the variation of Fe/Al ratio in natural-source aerosol is limited in a

		narrow range, aerosols with $EF > 2.00$ can still be evaluated as aerosol samples
		containing anthropogenic Fe component to a certain degree. The small
		variability of the Fe/Al ratio in desert soil in East Asia was confirmed (average
		\pm 1 σ standard deviation (ave. \pm 1 σ): 0.555 \pm 0.170, range: 0.294–1.05,
		Nishikawa et al., 2013; Ding et al., 2001; Cao et al., 2008; Liu, X. et al., 2022
		and references therein). The Fe/Al ratio in mineral dust exhibits a small
		variability, and thus, enrichment of anthropogenic Fe is recognized when the EF
		of Fe is higher than 2.00 (Fe/Al $>$ 1.37).
2.6.	Line 387: The statement of "The [d-Fe]/[d-Al] ratio is also decreased with increasing	Thank you for pointing out. We have revised it.
	pH" is repeated.	
2.7.	Too many figures, the authors can use correlation matrix to illustrate the relationship	We have rearranged the figures in the text according to your suggestion. Correlation
	between Fe and other elements by merging Figure 4 and Figure 5.	matrixes associated with Figs. 4 and 5 are shown in Table S2 and S3. Figs. 4 and 5
		showed correlations of non-crustal Fe with anthropogenic elements in coarse and fine
		aerosol particles, respectively. Therefore, their correlation matrixes were made
		separately.
2.8.	Line 274: Please change " 1.99 ± 0.892 " to " 1.99 ± 0.89 ". Many similar issues in the	Thank you for pointing out. We have checked the entire manuscript and corrected
	manuscript.	these problems.
	Line 381 and 386: The number of decimal places should be consistent throughout the	
	manuscript.	
2.9.	Line 311 missing recent reference npj Climate and Atmospheric Science 5(1), 53.	Thank you for your suggestion. We have added the reference of Liu et al. (2022).
2.10.	Line 368: Remove "that" in the statement of "One of the reasons is that that"	We follow the suggestion. We corrected the sentence as described below:
		One of the reasons is that the [d-Fe]/[d-Al] ratio in mineral dust differs from that
		in non-crustal sources, as will be discussed below (Fig. 6a).
2.11.	Line 690: The descriptions off (g), (h) and (i) are not consistent with Figure 2 (g) and	Thank you for pointing this out and we apologize for the inconvenience during your
	(h).	peer-preview processes. We have revised the caption of the figure. In addition, Figure
		2 was moved to Figures S3 and S4 in Supplemental Information to reduce figures in
		the manuscript and to improve the resolution of the image.
2.12.	Line 705: Figure 3c is the enrichment factor of Fe, not the Fesol% in each size fraction.	Thank you for pointing this out. We have revised it.